
Steady Abstractions for CPS Controller Synthesis*

Francisco Palau Romero Rüdiger Ehlers

Abstract— Designing correct-by-construction controllers for
cyber-physical systems is difficult. Synthesis aids the controller
designer by automating this process once the controller’s
specification and the dynamics of the environment have been
formalized. Most classes of system dynamics have undecidable
synthesis problems, which is commonly mitigated by computing
a discrete abstraction of the system dynamics and synthesizing a
controller that works correctly under all environment behaviors
captured by the abstraction. Abstractions can be made at
varying levels of granularity. If the granularity is too fine, the
abstraction grows too large to be suitable for current synthesis
approaches. If the granularity is too coarse, it is insufficient for
computing a controller that satisfies the specification.

In this paper, we present a new abstraction computation
process that facilitates working with coarser abstractions in
synthesis while retaining the controllability of the system. Our
approach takes a fine-grained abstraction and processes it to
a coarser abstraction in which the controller is only offered
actions that minimize the amount of non-determinism in the
abstraction. We demonstrate that our approach helps to find
a good balance between precision and controllability in CPS
controller synthesis on two case studies.

I. INTRODUCTION

The commonly used approach to synthesize controllers
for cyber-physical systems with at least moderately complex
dynamics and specifications is to first compute a discrete
abstraction of the system’s physical dynamics, and to syn-
thesize a controller that works correctly in an environment
whose behavior is captured by the discrete abstraction. In
order for the synthesized controller to be deployable in the
field, the abstraction must alternatingly simulate [1], [2] the
real system.

Alternating simulation abstractions can be built at various
degrees of granularity. Coarse abstractions have few discrete
states, which reduces the computation time of the synthesis
process in which the abstraction is to be used. However,
a coarse abstraction makes it more difficult to control the
system, as the abstraction needs to overapproximate the pos-
sible behavior of the physical environment. If an abstraction
is too coarse, then due to overapproximation, it contains
spurious traces that prevent the controllability of the system.
To counter this problem, more fine-grained abstractions can
be computed. Since this increases the number of discrete
states in an abstraction, this makes the synthesis process
computationally more difficult, and is thus avoided in prac-
tice whenever possible. Hence, physical environments that
require a very fine abstraction in order to be controlled
are currently out of reach for CPS controller synthesis
approaches that work with discrete abstractions.

The authors are with the University of Bremen, Germany.

(a) Effect of an “evade to the
right” action.

(b) Effect of an “evade to the
left” action

(c) Composite steady action

Fig. 1: Motivating example for steady abstractions.

In this paper, we present a new approach to compute al-
ternatingly simulating abstractions that are relatively coarse,
yet capture the main characteristics of finer abstractions. Our
approach is agnostic to the concrete system dynamics as
it post-processes a relatively fine-grained abstraction to a
coarser one. The main idea is that when making the ab-
straction coarser, we replace the actions by steadier actions;
these are the ones that minimize the number of discrete states
reached under the action, and we use the fine abstraction to
enumerate such steady actions. Figure 1 demonstrates how
this process can lead to coarser abstractions that are small,
yet useful. Shown are parts of a two-dimensional abstraction
of the dynamics of a unicycle, where the system state is
characterized by the X and Y positions of the unicycle in
the workspace and the current heading and speed. Figure 1a
demonstrates the effect of applying an “evade to the right”
action from the middle cell (for some fixed current speed
and heading) in the abstraction. The arrows depict how the
abstracted system evolves from the states represented by
the cell, and the abstraction needs to have all four marked
abstraction cells as successors in order to alternatingly sim-
ulate the real-world physical system. Figure 1b shows the
same setting for an “evade to the left action”. Again, the
discrete abstraction needs to have four successor states. For
computing the steady abstraction in Figure 1c, we start with
a finer abstraction and then postprocess it to a steadier coarse
abstraction. Here, the abstraction is finer by a factor of two,
so every cell has multiple subcells. In each subcell, we
choose actions such that the overall number of states in the

abstraction is minimal. In this example, we can use “evade to
the right” actions in the left subcells, and “evade to the left”
actions in the right subcells. This strategic choice minimizes
the number of states reached in the abstraction under the
abstract action and is thus used in our steady abstraction.

Our approach is particularly interesting for postprocessing
alternatingly similar time- and state-quantized abstractions
of linear and non-linear systems. These are relatively easy
to compute (for example using toolkits such as SCOTS
[3] or PESSOA [4]), but difficult to use in synthesis, as
for all but the simplest system dynamics, they exhibit a
high degree of non-determinism. Our approach mitigates this
problem by computing abstractions with a lower degree of
non-determinism from finer abstractions. It thus helps with
getting synthesis of controllers for complex dynamics more
scalable. We demonstrate the effectiveness of our abstraction
processing technique on two case studies with ω-regular
specifications. The first case study features vehicle dynamics
and a specification that has both safety and liveness compo-
nents, while the second one uses moon lander dynamics and
a reachability specification.

II. RELATED WORK

Discrete abstractions have been proven to be useful for
computing controllers for linear and non-linear systems [5],
[5], [6], [7], [8], [9], [10], [11], [12]. While in order to be use-
ful for control, cyber-physical system dynamics abstractions
need to over-approximate the system’s behavior, there exist
several concretizations of the concept that differ in the type
of simulation relation that they build between the concrete
and abstract systems.

The use of exact alternating simulation relations [13], [14]
for controller synthesis assumes full and precise observation
of the system to be controlled. Approximate alternating simu-
lation relations [15], [16] are a generalization of this concept
for controlling systems under a measurement imprecision ε
and under disturbances [17]. Feedback refinement relations
[18] are another refinement of alternating simulation relations
that is orthogonal to approximate simulation. Controllers that
have been synthesized using a discrete system abstraction
that is in relation to the physical system by a feedback
refinement relation do not need to observe the full physical
system state, and only need quantized state information.
Furthermore, for abstractions that are related to the concrete
system by feedback refinement, the structure of the abstrac-
tion ensures that controller actions can be used as control
input without an additional mapping into the concrete system
domain. When processing a discrete abstraction that has a
feedback refinement relation with the environment with the
approach that we present in this paper, the former of these
two properties is retained, but the latter of these properties
is not.

To the best of the authors’ knowledge, no rigorous post-
processing approach for alternating simulation relations and
their refinements has been proposed so far. For this initial
treatment, we focus on classical alternating simulation rela-
tions to keep the presentation concise, and defer a closer

look at the adaptation of our approach to ε-approximate
alternating simulation relations to future work.

III. PRELIMINARIES

a) Basics: Given some set K, we denote the set of
finite strings from characters in K as K∗ and the set of
infinite strings over K as Kω . Given some function f : K →
M for some sets K and M , we also view f as a relation such
that for some k ∈ K and m ∈M , we have (k,m) ∈ f if and
only if f(k) = m. The composition between two relations
R and R′ is defined as R ◦ R′ = {(x, y) | ∃z.(x, z) ∈
R ∧ (z, y) ∈ R′)}. Given some function f : K → M , its
inverse f−1 is a function from M to 2K such that f−1(m) =
{k ∈ K | f(k) = m} for all m ∈M .

b) Discrete-time systems: We consider discrete-time
system dynamics of the form

y = f(x, u, d),

where y ∈ X and x ∈ X are the states after and before a
step of the system’s execution, u ∈ U is a control signal,
d ∈ D is the disturbance, and f : X × U × D ⇀ X
is an arbitrary partial function. We can also represent f
as a set of transitions T ⊆ X × U × X by defining
T = {(x, u, y) | ∃d ∈ D.f(x, u, d) = y}. We also
call (X,U, T) a system description. We say that a word
w = (wX0 , w

U
0)(wX1 , w

U
1) . . . ∈ (X × U)ω ∪ (X × U)∗ is a

trace of (X,U, T) if for every i ∈ N (smaller than its length
if w is infinite), we have (wXi , w

U
i , w

X
i+1) ∈ T . We only

consider maximal finite traces in the following, i.e., those
that cannot be extended to a longer trace. We also define
δX,T (x) = {u ∈ U | ∃y ∈ X.(x, u, y) ∈ T} for all x ∈ X .

We say that a triple (X ′, U ′, T ′) is an alternating simulat-
ing abstraction of a system description (X,U, T) if X ′ and
U ′ are sets, T ′ ⊆ X ′ ×U ′ ×X ′, and there exists a function
RX : X → X ′ such that for all x ∈ X and u′ ∈ U ′, there
exist a u ∈ U such that for all y ∈ X with (x, u, y) ∈ T , we
have (RX(x), u′, RX(y)) ∈ T ′. We call RX the alternating
simulation relation between (X,U, T) and (X ′, U ′, T ′).1

Alternating simulation relations can also be nested. If
a system (X ′, U ′, T ′) alternatingly simulates a system
(X,U, T) by a relation RX , and a system (X ′′, U ′′, T ′′)
alternatingly simulates (X ′, U ′, T ′) by a relation R′X , then
R′X ◦ RX is an alternating simulation relation between
(X,U, T) and (X ′′, U ′′, T ′′) ([1], Proposition 4.23).

Feedback refinement relations [18] are a refinement of
alternating simulation relations. A triple (X ′, U ′, T ′) is a
feedback refinement abstraction of some system (X,U, T)
if there exists a feedback refinement relation R ⊆ X × X ′
such that U ′ ⊆ U , we have δX,T (x) ⊇ δX′,T ′(x

′) for every
(x, x′) ∈ R, and for every (x, x′) ∈ R and u ∈ δX′,T ′(x′),
we have {y′ ∈ X ′ | ∃y ∈ X.(y, y′) ∈ R, (x, u, y) ∈ T} ⊆
{y′ ∈ X ′ | (x′, u, y′) ∈ T ′}.

1In other works employing alternating simulation relations, fX may
also be a set-valued function. Not considering this possibility here is for
notational convenience only.

c) Controller Synthesis: Given a system (X,U, T),
some set of initial states X0 ⊆ X and some specification
L ⊆ (X × U)ω , the synthesis problem is to compute a
strategy s : X∗ → U such that for all x0 ∈ X0 and all traces
w = (wX0 , w

U
0)(wX1 , w

U
1) . . . of (X,U, T), if wX0 = x0 and

for all i ∈ N, we have wUi+1 = s(wX0 w
X
1 . . . wXi), then

w ∈ L. A specification that admits a strategy for some
given system (X,U, T) is called realizable, otherwise it is
unrealizable.

If a strategy can be represented with a finite number of
states, then we say that it can be implemented in a controller
that simulates the strategy, and hence controls the physical
system to satisfy the specification.

Controllers can also be computed over abstractions.
In this case, we modify the specification L to a
specification L′ ⊆ (X ′ × U ′)ω such that for all
w′ = (w′X0 , w′U0)(w′X1 , w′U1) . . . ∈ L′ and all w =
(wX0 , w

U
0)(wX1 , w

U
1) . . . ∈ L, if we have that (wi, w

′
i) ∈ RX

for all i ∈ N, then w ∈ L. Given a specification L′, a
strategy implementing it over an abstraction is a function
s : X ′∗ → U ′ such that for all x0 ∈ X0 and all traces w′ =
(w′X0 , w′U0)(w′X1 , w′U1) . . . of the system, if (x0, w

′X
0) ∈ RX

and w′Ui = s(w′X0 . . . w′Xi) for all i ∈ N, then w′ ∈ L′.
Whenever a strategy for the abstraction is found, the

alternating simulation between the original system and the
abstraction guarantees the existence of a corresponding strat-
egy for the original system [17], [1]. If L′ belongs to the class
of ω-regular properties (see, e.g., [19]), then if a strategy to
control L′ on the abstraction exists, it is finite-state and can
be implemented as a controller for the original system.

By the definition of a strategy (over an abstraction), a
strategy must avoid to reach the set of bad states, i.e., the
largest set of states X ′bad such that there is no strategy
enforcing L′ = (X ′×U ′)ω from any state in X ′bad . Bad states
represent, for instance, situations in which there is no way
to control the system not to leave its workspace boundaries.

Note that the complexity of checking the realizability of a
specification L′ over some abstraction (X ′, U ′, T ′) is super-
linear in |X ′| for most specification classes. For example,
the class of generalized reactivity(1) specifications has a
complexity that is quadratic or cubic in the size of X ′

[20], depending on whether the transition relation is stored
in explicit or symbolic form. Thus, keeping the size of an
abstraction small is of importance for the efficiency of the
synthesis process.

d) Satisfiability Solving: The Boolean satisfiability
problem (SAT) is the problem of finding a satisfying as-
signment to the variables of a Boolean formula, whenever it
exists. Nowadays, heuristic SAT algorithms are widely used
to solve problems with several thousand of variables, which
is sufficient for many practical SAT problems [21].

Modern SAT solvers typically require the input formula
to be given in conjunctive normal form (CNF). A clause
is a disjunction of literals, and these literals are either a
variable or its negation. A Boolean formula in CNF is then
a conjunction of clauses. For example, the Boolean formula
f(a, b, c) = (¬a ∨ b) ∧ (a ∨ c) is in CNF form.

Many modern solvers can also be run in incremental mode,
where a SAT instance is gradually built and can already
be checked for satisfiability before the instance is finalized.
Incremental SAT solving is more efficient than rebuilding the
SAT instance from scratch every time its satisfiability is to
be checked, as so-called learned clauses are kept between
the solver runs, but clauses can only be added between the
SAT solver runs and not removed. Some solvers furthermore
support assumed literals [22]. The solver then searches only
for solutions that in addition to the clauses also satisfy all
assumed literals.

IV. PROBLEM DEFINITION

In the following, we assume that we have a procedure to
compute a finite-state discrete abstraction (X ′, U ′, T ′) from
some system description (X,U, T). For the simplicity of
presentation, we assume that X = [0, d1] × . . . × [0, dn]
for some d1, . . . , dn ∈ R and n ∈ N, and that we have X ′ =
{0, . . . , d′1}× . . .×{0, . . . , d′n} for some d′1, . . . , d

′
n ∈ N as

state space of the abstraction.
We want to reduce the degree of non-determinism of

(X ′, U ′, T ′), which is defined as follows:
Definition 1: Given an abstract system (X ′, U ′, T ′) with

the set of bad states X ′bad , we define the degree of non-
determinism of T ′ as:

don(T ′) = maxx′∈X′\X′bad minu′∈U ′,∃y′:(x′,u′,y′)∈T ′

(|{y′ ∈ X ′ : (x′, u′, y′) ∈ T ′}|).
Abstractions with a high degree of non-determinism are
difficult to control, as a strategy needs to work correctly
however the non-determinism is resolved at runtime. We
removed the bad states from consideration in this definition,
as no controller (for any specification) can make use of
them without violating its specification in the long run.
Whenever the high degree of non-determinism leads to the
unrealizability of a specification under an abstraction, this
can be solved by making the abstraction finer (e.g., by
increasing the values d′1, . . . , d

′
n). While the degree of non-

determinism of the abstraction typically becomes higher with
this change, a finer abstraction enables the controller to base
its decisions on more precise data of the current system state.
As finer abstractions lead to higher computation times in
controller synthesis, we want to postprocess them to a coarser
abstraction whose degree of non-determinsm is smaller than
if we computed a coarser, non-postprocessed abstraction.

Definition 2: Let (X,U, T) be a (discrete-time) discrete-
state system (or a discrete abstraction of a discrete-time
system) with the state space X = {0, . . . , d1} × . . . ×
{0, . . . , dn}.

Let furthermore a sequence of compression factors
c1, . . . , cn ∈ N be given such that for all i ∈ {1, . . . , n}, ci
divides di, and (X ′, U ′, T ′) be a discrete system description
with X ′ = {0, . . . , d1c1 } × . . . × {0, . . . , dncn }. We define
a mapping m : X → X ′ such that m(x1, . . . , xn) =
(bx1

c1
c, . . . , bxn

cn
c) for all (x1, . . . , xn) ∈ X . We also define

θ(x′, a) = {m(y) | y ∈ X,∃x ∈ m−1(x′), (x, a(x), y) ∈ T}
for all x′ ∈ X ′ and all a : m−1(x′)→ U .

We say that (X ′, U ′, T ′) is a steady abstraction of
(X,U, T) if for every x′ ∈ X ′ and u′ ∈ U ′, for succ = {y′ ∈
X ′ | (x′, u′, y′) ∈ T ′}, there exists an a : m−1(x′) → U
such that succ = θ(x′, a), and there exists no assignment
a′ : m−1(x′)→ U such that θ(x′, a′) ⊂ succ.

In a steady abstraction, every available action minimizes
the set of reachable abstraction states under the action. A
finer abstraction is used to denote which abstraction states
can be reached or avoided, and from each state x′ in the
steady abstraction, it must define actions for each state in
m−1(x′) that jointly minimize the set of reached states in
the abstraction.

The following lemma establishes alternating simulation
between a discrete-state system and a steady abstraction
computed from it:

Lemma 1: If (X ′, U ′, T ′) is a steady abstraction of some
discrete-time system (X,U, T), then (X ′, U ′, T ′) is an alter-
nating simulation abstraction of (X,U, T).

Proof: By the definition of the concept of alternating
simulation abstractions, we need to show that there exists
a function RX : X → X ′ such that for all x ∈ X and
u′ ∈ U ′, there exists a u ∈ U such that for all y ∈ X with
(x, u, y) ∈ T , we have (R(x), u′, R(y)) ∈ T ′.

We choose RX = m. Let x ∈ X and u′ ∈ U ′ be
arbitrary. To satisfy the definition of alternating simulation
abstractions, we set u = a(x) for the a function to which
u′ corresponds by the definition of steady abstractions. Let
now (x, u, y) ∈ T . By the definition of Θ, we have that
θ(x′, a) contains m(y) for all states y ∈ X with (x, u, y) ∈ T
if x′ = m(x). Since {y′ ∈ X ′ | (x′, u′, y′) ∈ T ′} ⊇
θ(x′, a) (by the definition of succ), it follows that we have
(RX(x), u′, RX(y)) ∈ T ′, which was to be proven.

This lemma enables us to apply steady abstractions in the
context of cyber-physical system control. If we compute an
abstraction of a physical system that alternatingly simulates
the physical system, and we post-process this abstraction to
a steady abstraction, then by Proposition 4.23 of [1], we
know that the steady abstraction alternatingly simulates the
physical system as well. This enables us to implement a
controller that we synthesize for the steady abstraction in
the field.

Reissig et al. [18] refined the concept of alternating
simulation relations to feedback refinement relations, which
give rise to controllers that (1) only use quantized control
input and (2) use the same control actions in physical system
states that are mapped to the same state in the abstraction
by the refinement relation. The former property is retained
when processing a feedback refinement abstraction with our
approach. This follows directly from the fact that a steady ab-
straction alternatingly simulates the abstraction from which it
was computed. The second property of feedback refinement
relations is however not retained in steady abstractions. This
means that when implementing a controller computed with
our approach in the field, it needs to be slightly larger than a
controller synthesized for a feedback refinement abstraction,
as it needs to include a look-up table for selecting the
physical system actions for every action/state combination

in the steady abstraction.
Note that the definition of a steady abstraction leaves the

choice of actions in the steady abstraction relatively open.
We will later discuss reasonable choices of actions.

V. COMPUTING STEADY ABSTRACTIONS

As explained in Definition 2, we aim to compute a steady
abstraction (X ′, U ′, T ′) of a discrete system description
(X,U, T) for some compression factors c1, . . . , cn ∈ N.
We assume that (X,U, T) alternatingly simulates some real-
world physical system. Def. 2 already defines the structure
of X ′ in a steady abstraction, so it suffices to compute U ′

and T ′.
A post-processed abstraction (X ′, U ′, T ′) is steady if for

every x′ ∈ X ′ and every u′ ∈ U ′, the set of successors
for x′ and u′ in T ′ is as small as possible. More formally,
for some abstract state x′, we are searching for assignments
a : m−1(x′) → U such that for no a′ : m−1(x′) → U , we
have θ(x′, a) ⊃ θ(x′, a′). We can obtain such an assignment
a by solving a sequence of satisfiability problems, which
can be done with off-the-shelf satisfiability (SAT) solvers.
We use the following two sets of Boolean variables:
• V = {vy′}y′∈{m(y)|∃x∈m−1(x′),u∈U.(x,u,y)∈T} represent

every state in X ′ that is reachable from x′ under some
arbitrary action assignment a′,

• B = {bx,u}x∈m−1(x′),u∈δX,T (x) represent an assign-
ment a that we search for.

The main idea of the following encoding is to represent both
a and θ(x′, a) as a model of a Boolean formula in CNF, and
to ensure that θ(x′, a) is minimal by successively replacing
a by assignments a′ with θ(x′, a′) ⊂ θ(x′, a) until no such
assignment a′ can be found any more. The last assignment
then represents a valid action in a steady abstraction.

In order to ensure that the model of the Boolean formula
over V]B encodes a function a : m−1(x′)→ U , at least one
variable for each subset {bx,u}u∈U must evaluate to true
for each x ∈ m−1(x′). We use a clause

∨
u∈δX,T (x) bx,u for

every x ∈ m−1(x′) to enforce this.
Then, we need clauses that enforce that for every x ∈

m−1(x′) and for the encoded function a, all states m(y) with
(x, a(x), y) ∈ T are part of the encoded set θ′(x, a). Adding
a clause ¬bx,u ∨

∨
y′∈θ(x′,u) vy′ for every x ∈ m−1(x′) and

u ∈ U is suitable for this task.
We use these clause types in an iterative SAT solving

process that is described in Algorithm 1. In the main loop of
the algorithm, we search for all assignments a that minimize
the set θ(x′, a). Whenever a new assignment a is found, it
is tested whether another assignment a′ can be found with
θ(x′, a′) ⊂ θ(x′, a). To test this, in line 15, we force the next
assignment a′ to induce a strict subset of reachable states.
The strictness requirement is implemented by adding a clause
in line 17, while enforcing that θ(x′, a′) ⊆ θ(x′, a) holds is
done in line 15 by requiring the SAT solver to yield solutions
in which all variables in V \ {vy | y ∈ θ(x′, a)} have false
values.

Note that the clause added in line 17 can remain in the SAT
instance after a new assignment a has been found without

Algorithm 1 Algorithm to compute a steady abstraction from
a given abstraction (X,U, T)

1: function COMPUTESTEADYABSTRACTION(X,U, T)
2: X ′ ← {m(x) | x ∈ X}
3: U ′ ← ∅
4: T ′ ← ∅
5: ψ ← true
6: for x′ ∈ X ′ do
7: V ← {vy′}y′∈{m(y)|(x,u,y)∈T,x∈m−1(x′),u∈U}
8: B ← {bx,u}x∈m−1(x′),u∈δX,T (x)

9: ψ ← ψ ∧
∧
x∈m−1(x′)

∨
u∈δX,T (x) bx,u

10: ψ ← ψ ∧
∧
x∈m−1(x′),u∈δX,T (x),y∈X,(x,u,y)∈T

11: ¬bx,u ∨ vm(y)

12: ψ ← ψ ∧
∨
vy′∈V,y′ 6=x′

vy′

13: while ψ is satisfiable do
14: w ← model of ψ
15: while ψ∧

∧
v∈V,w(v)=false ¬v is satisfiable do

16: w ← model of ψ
17: ψ ← ψ ∧

∨
v∈V,w(v)=true ¬v

18: succ ← {y′ ∈ X ′ | w(vy′) = true}
19: act = max{u′ ∈ N | ∃y′ ∈ X ′.(x′, u′, y′)
20: ∈ T ′}+ 1
21: T ′ ← T ′ ∪ {(x′, act , y′) | y′ ∈ succ}
22: U ′ ← U ′ ∪ {act}
23: return (X ′, U ′, T ′)

making the search process non-incremental, as every other
assignment a′ found later in the search process needs to have
θ(x′, a′) 6⊃ θ(x, a) 6= ∅ in order to be a valid solution, hence
the added clause needs to be fulfilled in all future solutions.
The same clause also ensures that the next assignment a
found in the main loop needs to have at least one different
successor state, so that the main loop eventually terminates.

By the fact that Algorithm 1 computes action assignments
a that minimize θ(x′, a), it minimizes the degree of non-
determinism (Definition 1) in the abstraction (X ′, U ′, T ′).

To speed up the algorithm, it makes sense to remove all
dominated actions from (X,U, T) before running it. This
means that whenever for some state x ∈ X ′ and two actions
u, u′ ∈ U , we have {y ∈ X, (x, u, y) ∈ T} ⊂ {y ∈
X, (x, u′, y) ∈ T}, we remove all transitions (x, u′, y) from
T , as action u is then a strictly better choice than u′ in state x.

The complexity of Algorithm 1 is dominated by the
number of invocations of the SAT solver. The succ sets found
in the loop starting in line 13 are pairwise incomparable and
subsets of κx′ = {y′ ∈ X ′ | ∃u′ ∈ U ′.(x′, u′, y′) ∈ T ′} (for
every state x′ ∈ X ′). Hence, the number of iterations of this
loop is bounded by

(|κx′ |
b|κx′ |/2c

)
. The loop starting in line 15 is

executed at most |κX′ | times per iteration of the outer loop.
Because the typically large number of actions and the

number of iterations required in the algorithm, in the re-
mainder of this section we present two modifications of the
algorithm to reduce both of them while retaining the good
properties of the abstraction.

A. Restricting the spreading of actions

In the first modification of Algorithm 1, we add a two-
stage filtering process that reduces the set of actions with
successors in T ′ to those that are most steady. In the first
stage, we determine the maximum spread of the actions in
(X,U, T). That is, we iterate over all y1, y2 ∈ X for which
there exist u ∈ U and x ∈ X with (x, u, y1) ∈ T and
(x, u, y2) ∈ T , and compute the spread of y1 and y2, which
is formally defined as

spreadX(y1, y2) =

∣∣∣∣⌊ y1
(c1, . . . , cn)

⌋
−
⌊

y2
(c1, . . . , cn)

⌋∣∣∣∣ ,
where all operations (division, rounding, subtraction and
absolute value taking) work element-wise on n-tuples. The
maximum overall spread maxSpread then is the element-
wise maximum of the spread for each pair y1, y2, and it
gives us an approximation of the unavoidable degree of non-
determinism that (X,U, T) induces into (X ′, U ′, T ′). As we
are interested in actions in the steady abstraction that do not
lead to unnecessary spread, for the first stage of the filtering
process, we inject the following operation before line 13 of
Algorithm 1:

ψ ← ψ ∧
∧

y′1,y
′
2∈X′, |y′1−y′2|6≤mSF ·maxSpread

(¬vy′1 ∨ ¬vy′2)

Here, ≤ is a component-wise comparison and · is the
scalar multiplication. The constant mSF is user-provided
and defines a limiting spreading factor. The smaller the user-
provided factor is, the more successor state combinations are
excluded. Note that mSF must always be ≥ 1 not to exclude
all possible transitions, and in our experiments in the next
section, we use mSF = 1.5. The added clauses reduce the
number of iterations of the algorithm’s main loop, as many
action assignments a are excluded a-priori.

To further reduce the number of actions and as the second
step of the filtering process, we post-process the abstraction
(X ′, U ′, T ′) after the execution of Algorithm 1 by removing
actions with a high degree of non-determinism that are not
strictly necessary to reach any successor state. For every x′ ∈
X ′, we perform the following three steps:

1) First, we compute for every u′ ∈ U ′ with T ∩ ({x′}×
{u′}×X ′) 6= ∅ the spread of the action u′ in x′, which
is defined as

spreadX′(x
′, u′) = max

y′1,y
′
2∈X

′.{x′}×
{u′}×{y′1,y

′
2}⊆T

′

‖y′1 − y′2‖∞,

where ‖·‖∞ denotes the Hamming distance. We order
the actions u′ by spreadX′(x

′, u′).
2) Then, we iterate over all actions u′ in ascending order

of their spreadX′ values and remove all actions u′ for
which all states y′ with (x′, u′, y′) ∈ T ′ have already
been found by an earlier action in the list, i.e., we have
(x′, û′, y′) ∈ T ′ for an earlier action û′. The action û′

can be different for every y′ with (x′, u′, y′) ∈ T ′ in
this checking step.

3) Finally, we restrict T ′ to only have actions u′ for state
x′ that have not been filtered out in the previous step.

Note that this filtering process is sound as it only removes
available actions for the controller, but never alters them.

B. Using the actions in the original abstraction as guidance

The second modification is guided by the available actions
in the original abstraction and chooses assignments a that
resemble the behavior of applying the same control input
u ∈ U from all states x′ ∈ X ′ that correspond to the same
state x ∈ X in the original abstraction. At the same time,
we still reduce the set of successor states reachable under
the steady action as much as possible, so we still search for
actions a for which θ(x′, a) is minimal (for every state x′).
Figure 1 shows a simple example for this idea.

We implement the idea by introducing a third vari-
able set A = {au | u ∈ U}. Then, after line 12
of Algorithm 1, we add the clause

∨
u∈U au for ensur-

ing that one action in the original abstraction is used
as blueprint for the steady action. The further clauses∧
u∈U

∨
y′∈X′,6∃y∈X:(x,u,y)∈T∧y′=m(y)(¬au∨¬vy′) then pre-

vent the selection of steady actions for which now all
successors are reachable from all states in m−1(x′) by the
same action u ∈ U . Note that there is no need to enforce that
at most one variable in A can have a true value, as whenever
multiple variables have true values in an assignment, then
we can just pick any of the encoded actions.

VI. EXPERIMENTS

To evaluate the usefulness of our abstraction compression
approach, we implemented it in a prototype tool that pro-
cesses an alternating simulation abstraction of some system
dynamics. We applied it to two case studies, one with a
simple vehicle dynamics and another one with a simple moon
lander dynamics.2

The computer used for the experiments has an Intel Core
i5-5200U CPU (2.20 GHz) with 8 GB of RAM running
Ubuntu Linux.

A. Simple Vehicle Example

The simple vehicle dynamics are of the form

ẋt =

sin(x3)
cos(x3)

0

+

 0
0
u1

 ,

where xt = (x1, x2, x3)T is the state of the system at time
t and ut = (u1)T is the control input at time t. In a state
(x1, x2, x3)T , the components x1 and x2 denote the X- and
Y-coordinates of the vehicle in a two-dimensional workspace,
while x3 represents the current heading. The controller is
required to keep the position of the vehicle in the range
[0, 8] for both X- and Y-dimensions. The vehicle runs with a
constant speed. The control input for changing the heading
of the vehicle is restricted to [−1324 π,

13
24π].

2The implementation for the abstraction processor and our case stud-
ies can be found at http://motesy.cs.uni-bremen.de/tools/
abstractionProcessor.

Fig. 2: Workspace of the vehicle example using a steady
abstraction, where 93 of the 256 workspace cells were
marked as obstacle cells.

We use the SCOTS framework [3] to compute a discrete-
time system abstraction that gives rise to a feedback re-
finement relation between it and the concrete infinite-state
system. We use a time step of τ = 1.0, and discretize the
workspace to 64 cells of size 0.125 units in each X- and Y-
dimension and 128 intervals in the third (heading) dimension
of size π

64 . The input space is discretized to 13 intervals of
size π

12 .
Our implementation of the approach presented in the

preceding section then processes this system abstraction to
a smaller abstraction that alternatingly simulates the original
system by compressing all dimensions by a factor of 4 each,
which gives an abstraction with D = 16 × 16 × 32 states.
As a comparison basis, we also consider

1) the relatively fine abstraction produced by SCOTS
from which we compute the steady abstraction, as well
as

2) the non-steady coarser abstraction that we obtain from
SCOTS when asking directly for a discrete-state ab-
straction with D states.

Because the system dynamics are translation-invariant in the
X- and Y-dimensions, our implementation executes the main
loop of Algorithm 1 only once for every rotation value. The
resulting transitions are then added to T ′ for all possible
(x, y) coordinates as starting points, where we remove pre-
decessor state/action combinations for which some of their
transitions leave the workspace boundaries.

We store the abstraction as a binary decision diagram,
which is a symbolic data structure that is capable of storing
state and transition sets. The reactive synthesis tool slugs
[23] is then used to synthesize controllers for the resulting
abstraction. Both our prototype tool and slugs use the
CuDD decision diagram library [24]. Our prototype tool
furthermore uses picosat [25] version 965 or alternatively
lingeling [26] in the bbc-9230380-160707 satisfia-
bility competition 2016 version as SAT solvers.

We used the computed system dynamics abstraction for
synthesizing a controller that requires the system to react to

Fig. 3: Workspace of the vehicle example using a fine
abstraction, where 2774 of the 4096 workspace cells were
marked as obstacle cells.

a Boolean input signal: if the input signal eventually stays
false, the vehicle has to infinitely often visit the lower right
5× 5 cell region of the workspace, while if the input signal
eventually stays true, the equally large upper left workspace
region needs to be visited infinitely often. Since the controller
does not know about the future evolution of the input signal,
it has to eagerly move towards one of the two goal regions
whenever the input signal value changes. Since the size of
the relatively fine abstraction is 64 × 64, the target regions
for its specification each have a size of 20× 20.

The results of the experiments are shown in Table I. The
specification is unrealizable when using the coarse abstrac-
tion of size D obtained directly from SCOTS. Computing
the steady abstraction without any filtering was infeasible.
When using one of the two modifications from Section V-A
and Section V-B, computing a steady abstraction was much
faster and the specification was realizable in both cases. Since
the modified steady abstractions only use actions that are
also present in the steady abstraction computed with any
of the modifications from Section V-A and Section V-B, the
same specification has to be realizable for the standard steady
abstraction.

To determine the precision of the steady abstraction, we
performed another experiment in which we gradually marked
as many abstraction cells as static obstacles as possible
without changing realizability, starting from the cells in the
middle of the abstraction and ending in the corners. Figure 2
shows the resulting workspace (using the steady abstraction
computed with the modification from Section V-A). All 256
realizability checks for this process together took 46 minutes.
As it can be seen in Figure 2, a large obstacle (and various
smaller ones) in the middle of the workspace can be tolerated
without making the specification unrealizable. Note that our
approach does not guarantee that an abstraction is symmetric,
which explains the asymmetry of the figure. Figure 3 shows
the resulting workspace after the same process when using
the fine abstraction from which we computed the steady
abstraction. As expected, more static obstacles can be added

TABLE I: Results of the experiments for the vehicle example
using the SAT solver picosat. T.A. is the computation
time for obtaining the abstraction, T.C. the time needed to
check the realizability of the specification under the abstrac-
tion, D.N.D. is the degree of non-determinism according to
Definition 1.

Abstraction Type T.A. T.C. D.N.D

Coarse Abstraction 1.826s 6.546s 18
Fine Abstraction 4m4.758s 9m18.450s 24

Steady Abstraction timeout > 24h - -
Steady Abstraction + Ext. A 4m41.454s 9.149s 12
Steady Abstraction + Ext. B 4m10.000s 8.815s 12

before the system becomes unrealizable. This is because
1) the actions in the steady abstraction are based on those
available in the fine abstraction, and 2) if any state in
m−1(x′) for some state x′ of the steady abstraction is a
bad state, then x′ is also automatically a bad state.

To evaluate the effect of the choice of SAT solver, we
also computed the steady abstractions with lingeling as
backend solver. The computation times (using the extensions
from Section V-A and Section V-B) slightly increased to
5m42.872s and very slighty decreased to 4m6.737s respec-
tively. We can see that the individual SAT queries given
to the SAT solver are not difficult enough to benefit from
lingelings’s more advanced preprocessing schemes.

B. Simple Moon Lander Example

For the second case study, we consider the dynamics of a
moon lander:

ẋt =

x1
x2
1.0
0

+

0
0
u1
u2

 ,

where xt = (x1, x2, x3, x4)T is the state of the system at
time t and ut = (u1, u2)T is the control input at time t. In
a state (x1, x2, x3, x4)T , the components x1 and x2 denote
the Y- and X-coordinates of the lander in a two-dimensional
workspace, while x3 represents the current speed along the
Y-axis and x4 denotes the current speed along the X-axis.
The control input components are restricted to [−2, 0] and
[−1, 1], respectively, and represent the acceleration in the
Y- and X-dimensions. The controller is required to keep
the position of the lander in the range [0, 10] along the Y-
axis and [0, 4.5] along the X-axis. The speed needs to be
kept in the range [−2.0625, 2.0625] in the Y-dimension and
[−1.0625, 1.0625] in the X-dimension.

Again we use the SCOTS framework [3] to compute an
abstraction to be processed. We use a time step of τ = 1.0
and discretize the workspace into 20 cells of size 0.5 units in
the Y-dimension and 9 cells of size 0.5 in the X-dimension.
There are 32 intervals in the third (Y-speed) dimension of
size 0.125 and only 16 intervals in the X-speed dimension
of size 0.125. The control input space is discretized to 33
intervals for the Y-acceleration and 16 for the X-dimension.
For the steady abstractions, the compression factor is 2 for

TABLE II: Results of the experiments for the moon lander
example. All labels are the same as in Table I.

Abstraction Type T.A. T.C. D.N.D

Coarse Abstraction 1m8.552s 0m7.302s 24
Fine Abstraction 8m11.066s 57m28.550s 36

Steady Abstraction timeout > 24h - -
Steady Abstraction + Ext. A 25m22.213s 3m53.306s 12
Steady Abstraction + Ext. B 11m28.337s 3m35.881s 12

the Y-axis position and 3 for the the Y-speed dimension.
The other dimensions are not compressed. Overall, we get a
steady abstraction with D = 10× 9× 11× 16 states.

In the moon lander dynamics, the X- and Y-position di-
mensions also are translation-invariant, which again enables
us to execute the main loop of Algorithm 1 only once
for every possible combination of the X-speed and Y-speed
values. For the specification, we require the lander to visit
two goal regions (above the ground) while crossing the
middle of the workspace at a height of at least 5, and finally
landing on the lower workspace boundary.

The results of the experiments are shown in Table II.
The specification is unrealizable when directly starting with
a coarse abstraction of size D computed by SCOTS. The
specification is realizable in all other cases.

VII. CONCLUSION

We have presented a novel method to postprocess cyber-
physical system abstractions in order to reduce their sizes
while retaining their controllability to a large extent. Our
approach helps to combine good controllability in alternating
simulation abstractions with a small abstraction size, which
keeps the computation times of the synthesis process for
which the abstractions are used short.

Our experiments show that the approach indeed computes
abstractions that are “steady” – the system is able to avoid
obstacles and to visit relatively small target regions, while
the synthesis process is much faster than when using a more
fine-grained abstraction. Due to these observations, we think
that this method is a useful component in future approaches
for CPS controller synthesis.

ACKNOWLEDGEMENTS

The Authors would like to thank Matthias Rungger for
extensive help with the SCOTS framework.

This work was partially funded by the Institutional Strat-
egy of the University of Bremen, funded by the German
Excellence Initiative.

REFERENCES

[1] Tabuada, P.: Verification and Control of Hybrid Systems - A Symbolic
Approach. Springer (2009)

[2] Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating
refinement relations. In: CONCUR ’98: Concurrency Theory, 9th
International Conference, 1998. (1998) 163–178

[3] Rungger, M., Zamani, M.: SCOTS: A tool for the synthesis of
symbolic controllers. In: 19th International Conference on Hybrid
Systems: Computation and Control, HSCC 2016. (2016) 99–104

[4] Jr., M.M., Davitian, A., Tabuada, P.: PESSOA: A tool for embedded
controller synthesis. In: Computer Aided Verification, 22nd Interna-
tional Conference, CAV 2010. (2010) 566–569

[5] Mattila, R., Mo, Y., Murray, R.M.: An iterative abstraction algorithm
for reactive correct-by-construction controller synthesis. In: 54th IEEE
Conference on Decision and Control, CDC 2015. (2015) 6147–6152

[6] Fu, J., Dimitrova, R., Topcu, U.: Abstractions and sensor design in
partial-information, reactive controller synthesis. In: American Control
Conference, ACC 2014. (2014) 2297–2304

[7] Rungger, M., Stursberg, O.: On-the-fly model abstraction for controller
synthesis. In: American Control Conference, ACC 2012. (2012) 2645–
2650

[8] Cámara, J., Girard, A., Gößler, G.: Synthesis of switching controllers
using approximately bisimilar multiscale abstractions. In: 14th ACM
International Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2011. (2011) 191–200

[9] Hahn, E.M., Norman, G., Parker, D., Wachter, B., Zhang, L.: Game-
based abstraction and controller synthesis for probabilistic hybrid sys-
tems. In: Eighth International Conference on Quantitative Evaluation
of Systems, QEST 2011. (2011) 69–78

[10] Girard, A.: Synthesis using approximately bisimilar abstractions: state-
feedback controllers for safety specifications. In: 13th ACM Inter-
national Conference on Hybrid Systems: Computation and Control,
HSCC 2010. (2010) 111–120

[11] Mouelhi, S., Girard, A., Gößler, G.: Cosyma: a tool for controller
synthesis using multi-scale abstractions. In: 16th International Con-
ference on Hybrid Systems: Computation and Control, HSCC 2013.
(2013) 83–88

[12] Alimguzhin, V., Mari, F., Melatti, I., Salvo, I., Tronci, E.: Linearising
discrete time hybrid systems. IEEE Transactions on Automatic Control
62(99) (2017) 5357–5364

[13] Tabuada, P.: Controller synthesis for bisimulation equivalence. Sys-
tems & Control Letters 57(6) (2008) 443–452

[14] Glück, R., Möller, B., Sintzoff, M.: A semiring approach to equiva-
lences, bisimulations and control. In: Relations and Kleene Algebra
in Computer Science, 11th International Conference on Relational
Methods in Computer Science, RelMiCS 2009, and 6th International
Conference on Applications of Kleene Algebra, AKA 2009. (2009)
134–149

[15] Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic
models for nonlinear control systems. Automatica 44(10) (2008)
2508–2516

[16] Girard, A., Pappas, G.J.: Approximation metrics for discrete and
continuous systems. IEEE Trans. Automat. Contr. 52(5) (2007) 782–
798

[17] Pola, G., Tabuada, P.: Symbolic models for nonlinear control sys-
tems: Alternating approximate bisimulations. SIAM J. Control and
Optimization 48(2) (2009) 719–733

[18] Reissig, G., Weber, A., Rungger, M.: Feedback refinement relations
for the synthesis of symbolic controllers. IEEE Trans. Automat. Contr.
62(4) (2017) 1781–1796

[19] Farwer, B.: ω-automata. In: Automata, Logics, and Infinite Games:
A Guide to Current Research, 2001. (2001) 3–20

[20] Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs.
In: VMCAI. (2006) 364–380

[21] Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of
Satisfiability. Volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press (2009)

[22] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and
Applications of Satisfiability Testing, 6th International Conference,
SAT 2003. (2003) 502–518

[23] Ehlers, R., Raman, V.: Slugs: Extensible GR(1) synthesis. In:
Computer Aided Verification - 28th International Conference, CAV
2016. (2016) 333–339

[24] Somenzi, F.: CUDD: CU Decision Diagram package release 3.0.0
(2016)

[25] Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean
Modeling and Computation (JSAT) (2008)

[26] Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT
competition 2013. In Balint, A., Belov, A., Heule, M., Järvisalo,
M., eds.: SAT Competition 2013. vol. B-2013-1 of Department of
Computer Science Series of Publications B, University of Helsinki
(2013) 51–52

