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Abstract. In the last years, search-based QBF solvers have become essential for
many applications in the formal methods domain. The exploitation of their rea-
soning efficiency has however been restricted to applications in which a “satisfi-
able/unsatisfiable” answer or one model of an open quantified Boolean formula
suffices as an outcome, whereas applications in which a compact representation
of all models is required could not be tackled with QBF solvers so far.
In this paper, we describe how computational learning provides a remedy to this
problem. Our algorithms employ a search-based QBF solver and learn the set of
all models of a given open QBF problem in a CNF (conjunctive normal form),
DNF (disjunctive normal form), or CDNF (conjunction of DNFs) representation.
We evaluate our approach experimentally using benchmarks from synthesis of
finite-state systems from temporal logic and monitor computation.
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1 Introduction

Recent progress in quantified Boolean formula (QBF) and satisfiability (SAT) solving
has strengthened the applicability of such solvers in many areas of formal methods. For
example, in bounded model checking [5], the question whether some property holds
along a run of a given system with some bounded length is encoded into a SAT formula,
and then subsequently solved. In case the formula is found to be satisfiable, from a
corresponding assignment to the variables, we can reconstruct a run that violates the
specification. When generalizing from SAT to QBF solving, we can use the universal
quantifiers to apply a more concise problem encoding or ask more complex questions
such as: “do there exist values for some parameters in a system such that for every
input of some fixed length to the system, we do not reach some error state?”. In case
of a positive answer, it is desirable to obtain values for the parameters. This is called
open QBF solving, as here, we leave some variables in the QBF instance unquantified
and ask for an assignment to these variables that witness the satisfiability of the QBF
formula. Such an assignment is also called a model of the formula.

For other applications, however, obtaining one model is not enough, but we rather
need all models of an open QBF formula. Representatives of this class are the syn-
thesis of finite-state systems from temporal logic specifications, which is frequently
reduced to game solving, and building a system monitor for identifying that a system
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reached a potentially bad state, i.e., a state from which some error state can be reached
within a short amount of time. As in these applications, there can easily be millions
or even billions of models for an open QBF formula, it is furthermore not sufficient
to just enumerate the models, but we rather need a compact representation of them.
Resolution-based variable elimination techniques are known not to scale well for many
variables to be eliminated, so we need some alternative approach for obtaining such a
compact representation of all models of a given SAT or QBF instance, which we call
the ALLSAT and ALLQBF problems for the scope of this paper.

For the ALLSAT problem, some solutions that go beyond simple model enumer-
ation and successive variable elimination are known. A typical ingredient of such an
approach is the enumeration of solution cubes [7,21], which leads to a DNF repre-
sentation of the set of models, possibly combined with some on-the-fly or a-posteriori
post-processing to obtain a CNF representation [7,8] of the model set. For ALLQBF,
search-based solving approaches that go beyond simple model enumeration [3] and
variable elimination by resolution are unknown so far. Thus, for applications in which
the ALLQBF problem has to be solved for instances that have many models, but for
which there are also many quantified variables, no feasible solution exists yet.

In this paper, we present an approach to extend a state-of-the-art search-based QBF
solver to an ALLQBF solver by employing (active) computational learning [24], which
is the process of deriving a model of some data by asking questions to some teacher or-
acle. Computational learning should not be confused with clause learning, a technique
to increase the performance of SAT and QBF solvers.

Our approach learns a CNF (conjunctive normal form), DNF (disjunctive normal
form) or CDNF (conjunction of DNFs) representation of the set of all models of an
open quantified Boolean formula, i.e., a QBF instance in which some variables are left
free. The algorithms for all of these result types can equally be applied for ALLSAT
solving, but the main target of our approach is ALLQBF solving. Benchmarks from
synthesis of finite-state systems and monitor generation show the effectiveness of the
new approach.

We start by stating the required preliminaries in Section 2 and describe our approach
to learn DNF, CNF or CDNF representations of the set of models of an open QBF prob-
lem in Section 3. Section 4 discusses how a modern QBF solver can be adapted to its use
as oracle in a learning process. In Section 5, we discuss synthesis and monitor genera-
tion as two of the application of ALLQBF solving, from which we take the Benchmarks
for our experimental evaluation of a prototype implementation of our learning approach
in Section 6. We conclude with a summary.

2 Preliminaries

In this paper, we consider open quantified Boolean formulas (QBF) in prenex-cnf-form,
i.e., for a finite set of free variables 𝑉 , we define the set of QBF instances 𝒬(𝑉 ) over
𝑉 as all formulas of the type:

𝜓 = 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.𝜑 (1)

where 𝑛 ∈ IN,𝑄𝑖 ∈ {∀,∃} for all 1 ≤ 𝑖 ≤ 𝑛, and 𝜑 is a Boolean formula in conjunctive
normal form over the set of variables {𝑥1, . . . , 𝑥𝑛} ∪ 𝑉 . A Boolean formula is said to
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be in conjunctive normal form if it is a conjunction of a set of clauses 𝜑 =
⋀︀

𝑣 𝐶𝑣 . A
clause 𝐶𝑣 is in turn a set of literals that is treated disjunctively, i.e., 𝐶𝑣 =

⋁︀
𝑤 𝑙𝑤. A

literal is a variable or its negation. In (1), 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛 is the prefix and 𝜑 is
the matrix. The level of a variable 𝑥𝑖 is defined to be one plus the number of expressions
𝑄𝑗𝑥𝑗 .𝑄𝑗+1𝑥𝑗+1 in the prefix with 𝑗 ≥ 𝑖 and 𝑄𝑗 ̸= 𝑄𝑗+1 (plus 1 if 𝑄1 = ∀). For the
sake of simplicity, we will use the term outermost (respectively innermost) quantifier
level to indicate variables having the highest (respectively lowest) level. The level of a
literal is the level of its variable. A literal 𝑙 is universal if 𝑙 = 𝑣𝑖 or 𝑙 = ¬𝑣𝑖 for some
1 ≤ 𝑖 ≤ 𝑛 with 𝑄𝑖 = ∀. All other literals are existential. In (1), a literal 𝑙 is

– unit if 𝑙 is existential, and, for some 𝑚 ≥ 0,
∙ a clause (𝑙 ∨ 𝑙1 ∨ . . . ∨ 𝑙𝑚) is a clause in 𝜑, and
∙ each literal 𝑙𝑖 (1 ≤ 𝑖 ≤ 𝑚) is universal and has a level lower than 𝑙.

– monotone or pure if
∙ either 𝑙 is existential, ¬𝑙 does not occur in any clause in 𝜑, and 𝑙 occurs in some

clauses in 𝜑;
∙ or 𝑙 is universal, 𝑙 does not occur in any clause in 𝜑, and ¬𝑙 occurs in some

clauses in 𝜑.
– don’t care if 𝑙 is existential, and neither 𝑙 nor ¬𝑙 occur in any clause in 𝜑.

Any element of 𝒬(𝑉 ) can be seen as a function that maps some variable valuation
𝑓 ∈ (𝑉 → B) to either true or false. If𝑄1 = ∀, we say that 𝜓 is outermost universally
quantified, and if 𝑄1 = ∃, we say that 𝜓 is outermost existentially quantified. We call
𝒬(∅) the set of closed QBF instances. For any set 𝑉 , 𝒬(𝑉 ) is the set of open QBF
instances over 𝑉 .

Given some set of variables 𝑉 and some open QBF formula 𝜓 ∈ 𝒬(𝑉 ), we say that
some variable valuation 𝑓 ∈ (𝑉 → B) is a model of 𝜓 if 𝜓(𝑓) = true. Likewise, 𝑓 is
a co-model of 𝜓 if 𝜓(𝑓) = false. A partial variable valuation is a function 𝑓 ′ : 𝑉 →
{false, true,⊥}, and a variable valuation 𝑓 is a completion of 𝑓 ′ if for every 𝑣 ∈ 𝑉 ,
𝑓 ′(𝑣) = 𝑓(𝑣) if 𝑓 ′(𝑣) ̸= ⊥. We say that a partial variable valuation is a partial model
(partial co-model) of some open QBF formula 𝜓 if every completion of the partial
valuation is a model (co-model) of 𝜓.

We call a conjunction of literals a term and a disjunction of terms a Boolean formula
in disjunctive normal form. For a partial (or complete) variable valuation 𝑓 ′ ∈ (𝑉 →
{false, true, ⊥}), we define the term induced by 𝑓 ′ as follows:

term(𝑓 ′) =
(︁ ⋀︁

𝑣∈𝑉,𝑓 ′(𝑣)=true

𝑣
)︁
∧
(︁ ⋀︁

𝑣∈𝑉,𝑓 ′(𝑣)=false

¬𝑣
)︁

For some Boolean formula in disjunctive normal form 𝑡1 ∨ 𝑡2 ∨ . . . 𝑡𝑚, we define
terms(𝑡1 ∨ 𝑡2 ∨ . . . ∨ 𝑡𝑚) = {𝑡1, 𝑡2, . . . , 𝑡𝑚}. Likewise, for some term 𝑡 = 𝑙1 ∧ 𝑙2 ∧
. . .∧ 𝑙𝑚, we define lits(𝑡) = {𝑙1, 𝑙2, . . . , 𝑙𝑚}. For a Boolean formula 𝜓 over some set of
variables 𝑉 , some term 𝑡 = 𝑙1 ∧ . . .∧ 𝑙𝑚 is an implicant of 𝜓 if ¬𝑡∨𝜓 ≡ true. A term
is called a prime implicant if we cannot remove any of its literals without losing the
property that it is an implicant. A Boolean function 𝐹 : (𝑉 → B) → B is called mono-
tone if for every 𝑓, 𝑓 ′ : 𝑉 → B with 𝐹 (𝑓) = true and for all 𝑣 ∈ 𝑉 , 𝑓(𝑣) = true
implies 𝑓 ′(𝑣) = true, we have 𝐹 (𝑓 ′) = true. We denote the exclusive or Boolean
operator by ⊕ and the function composition operator by ∘.
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3 ALLQBF Solving by Computational Learning

In this section, we show how to use computational learning techniques to obtain com-
pact representations of the sets of models of open QBF formulas that are specified in
the commonly used prenex-cnf-form.

Given an open QBF formula 𝜓 over the set of variables 𝑉 , we consider three repre-
sentations for a set of models of 𝜓 here: a disjunctive normal form (DNF) Boolean for-
mula, a conjunctive normal form (CNF) Boolean formula, and a conjunction of DNFs
(called CDNF), all over 𝑉 . We start this section by first declaring the requirements to
the QBF solver that we use as an oracle in the following learning algorithms, and then
explain how to compute a DNF, CNF or CDNF representation of the set of models using
the QBF solver as oracle in Sections 3.2, 3.3, and 3.4, respectively.

3.1 Requirements to the QBF Solver Used

For the henceforth algorithms, we use a QBF solver for open QBF formulas in prenex-
cnf-form as an oracle in the learning process, and apply it for checking the satisfiability
and non-universality of open QBF formulas. In case of a positive answer to one of these
checks, the solver must be able to return a (partial) model/co-model of the open QBF
formula, respectively, i.e., a valuation for the unquantified variables.

In the experimental evaluation of the following learning schemes, we used an open-
QBF version of QuBE 7.2 [15]. The modifications that were required are more com-
plex than one might think, as QuBE 7.2 uses a very advanced preprocessor that can
remove and rename variables. This preprocessor allows it to achieve high levels of per-
formance, but it can make the production of models and co-models nontrivial. So, the
modifications for satisfying the requirements above, while still using the preprocessor,
are described in Section 4.

3.2 Learning DNFs

Let 𝜓 = 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.𝜑 be an open QBF formula over the free variables 𝑉
such that 𝜑 is in conjunctive normal form. For learning a DNF representation of the
set of models of 𝜓, we apply a variant of the classical algorithms from learning theory
for obtaining monotone DNFs [2] or 𝑘-term DNFs [17] from a function to learn. Our
variant, depicted in Algorithm 1, makes use of the fact that when learning from open
QBF formulas, we can take advantage of the possibility to check if a term is an implicant
of 𝜓.

In the algorithm, terms are repeatedly added to the candidate DNF representation
𝜓′ until 𝜓′ represents precisely the set of models of 𝜓. In line 2 of the algorithm, it is
checked using a QBF solver as an oracle whether there exists some variable valuation
to the variables in 𝑉 that is a model of 𝜓, but not yet of 𝜓′. Whenever this is the case,
we know that 𝜓′ is not yet complete and search for a prime implicant of 𝜓′ that also
implies the newly found variable valuation.

Note that since the negation of a DNF formula is a CNF formula, (𝜑 ∧ ¬𝜓′) is in
CNF, and thus the QBF instance 𝜌 computed in line 2 is in prenex-cnf-form. The algo-
rithm uses the partial model of 𝜌 as a starting point for finding the next prime implicant.
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Of course, the model can also be complete, but does not need to be. In particular, if the
QBF solver finds a satisfying assignment to 𝑉 while still preprocessing, the model will
typically be incomplete.

In the remaining lines of the algorithm, the implicant 𝑓 ′ (represented in form of a
partial variable valuation) obtained in line 3 is reduced as much as possible in order
to obtain a prime implicant. In line 7, we take profit from the fact that we use a QBF
solver as oracle: by universally quantifying over the variables that are not set in 𝑓 ′

and one additional variable 𝑣, we can check whether 𝑓 ′(𝑣) can be set to ⊥ without
changing the fact that 𝑓 ′ is an implicant. The algorithm guarantees that at the end of

Algorithm 1: DNF learning using a QBF solver as oracle
Data: An open QBF instance 𝜓 = 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.𝜑 over the set of variables 𝑉
Result: The set of its models represented as DNF 𝜓′

begin
𝜓′ := false1
while 𝜌 := 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.(𝜑 ∧ ¬𝜓′) is satisfiable do2
𝑓 ′ := partial model of 𝜌3
for 𝑣 ∈ 𝑉 do4

if 𝑓 ′(𝑣) ̸= ⊥ then5
𝑓 ′′ := 𝑓 ′ ∖ (𝑣 ↦→ 𝑓 ′(𝑣)) ∪ (𝑣 ↦→ ⊥)6
if ∀{𝑣′ ∈ 𝑉 | 𝑓 ′′(𝑣′) = ⊥}.𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.(𝜑 ∧ term(𝑓 ′′)) ̸≡ false7
then
𝑓 ′ := 𝑓 ′′8

𝐿 := {¬𝑣 | 𝑣 ∈ 𝑉, 𝑓 ′(𝑣) = false} ∪ {𝑣 | 𝑣 ∈ 𝑉, 𝑓 ′(𝑣) = true}9
𝜓′ := 𝜓′ ∨

⋀︀
𝑙∈𝐿 𝑙10

end

the computation, the DNF representation of the set of models of 𝜓 is irreducible, i.e.,
there are no superfluous literals or terms in the obtained DNF 𝜓′.

3.3 Learning CNFs

Learning CNFs instead of DNFs as described above can be seen as the dual case. Since
for search-based QBF solving, the matrix of a Boolean formula has to be in CNF, we
would however have to re-encode this matrix to complement the original formula. Thus,
we apply a slightly different method, aiming to skip the re-encoding step into prenex-
normal-form of the formula.

Algorithm 2 describes the modified procedure. In this algorithm, the function Enc−

is used to map a Boolean formula in CNF form into a CNF formula that encodes its
negation (using a Tseitin encoding [23]), and EncV− describes the necessary variables.
Let 𝜓 =

⋀︀
1≤𝑖≤𝑚

⋁︀
1≤𝑗≤𝑘𝑖

𝑙𝑖𝑗 be a CNF formula with 𝑚 ∈ IN, 𝑘1, . . . , 𝑘𝑚 ∈ IN, and
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Algorithm 2: CNF learning using a QBF solver as oracle
Data: An open QBF instance 𝜓 = 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.𝜑 over the set of variables 𝑉
Result: The set of its models represented as CNF 𝜓′

begin
𝜓′ := true1
while 𝜌 := ∃𝑠,EncV−(𝜓′).𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.((𝜑 ∨ 𝑠) ∧ (Enc−(𝜓′) ∨ ¬𝑠)) is2

non-universal do
𝑓 ′ := partial co-model of 𝜌3
for 𝑣 ∈ 𝑉 do4

if 𝑓 ′(𝑣) ̸= ⊥ then5
𝑓 ′′ := 𝑓 ′ ∖ (𝑣 ↦→ 𝑓 ′(𝑣)) ∪ (𝑣 ↦→ ⊥)6
if 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.(𝜑 ∧ term(𝑓 ′′)) ≡ false then7
𝑓 ′ := 𝑓 ′′8

𝜓′ := 𝜓′ ∧
(︁⋁︀

𝑣∈𝑉,𝑓 ′(𝑣)=false 𝑣 ∨
⋁︀

𝑣∈𝑉,𝑓 ′(𝑣)=true ¬𝑣
)︁

9

end

𝑙𝑖𝑗 ∈ 𝑉 ∪ {¬𝑣 | 𝑣 ∈ 𝑉 } for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑘𝑖. We define:

EncV−(𝜓) = {𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑚}

Enc−(𝜓) =
(︁ ⋁︁

1≤𝑖≤𝑚

𝑣𝑖

)︁
∧

⋀︁
1≤𝑖≤𝑚

⋀︁
1≤𝑗≤𝑘𝑖

(¬𝑣𝑖 ∨ ¬𝑙𝑖𝑗)

The algorithm is based on the idea to iterative find cubes of variable valuations to the
free variables that falsify the input formula. Such cubes are then added to the input
formula in the next round of the algorithm by encoding these using the Enc− function
in line 2 of the algorithm.

3.4 Learning CDNF

In [9], Bshouty describes a learning algorithm for conjunctions of Boolean formulas in
disjunctive normal form based on the monotone theory. Given some set of variables 𝑉 ,
we call a Boolean function 𝑓 over 𝑉 𝑐-monotone for some 𝑐 : 𝑉 → B if 𝑓 ′ ∘ 𝑚𝑐 is
monotone for 𝑚𝑐 being the function mapping a variable valuation 𝑥 : 𝑉 → B to some
other valuation 𝑥′ : 𝑉 → B such that for all 𝑣 ∈ 𝑉 : 𝑥′(𝑣) = 𝑥(𝑣)⊕ 𝑐(𝑣).

The main idea of Bshouty’s learning algorithm is to represent the function to learn
as a conjunction of Boolean formulas in disjunctive normal forms, where each of these
formulas is 𝑐-monotone for some 𝑐 ∈ (𝑉 → B). During the learning process, the
algorithm maintains and updates the candidate CDNF formula 𝜓′ learned so far. When-
ever there exists a false-positive for this CDNF formula, i.e., there exists a valuation
𝑓 : (𝑉 → B) for which 𝜓′(𝑓) = true but 𝜓(𝑓) = false, a new DNF is added to
𝜓′ that is kept 𝑓 -monotone during the learning process. Whenever a false-negative is
found for 𝜓′, i.e., there exists a valuation 𝑓 : (𝑉 → B) for which 𝜓′(𝑓) = false but
𝜓(𝑓) = true, for every DNF 𝜌 that is a conjunct of 𝜓′ and its associated monotonicity
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base 𝑐, 𝜌 is extended by some prime implicant for the 𝑐-monotone closure of 𝜓 that is
implied by 𝑓 . For more details on Bshouty’s CDNF learning algorithm, the interested
reader is referred to [22].

Algorithm 3 shows the overall learning algorithm, adapted to the treatment of open
QBF formulas. During its run, the set 𝐶 contains the CDNF learned so far, split up into
its DNF formulas, which are paired together with the respective monotonicity base.

In this algorithm, the function Enc− is used to map a set 𝐶 onto a CNF that encodes
the negation of the CDNF formula represented by 𝐶 = {(𝑐1, 𝜌1), . . . , (𝑐𝑚, 𝜌𝑚)}, and
EncV− describes the necessary variables. We define:

EncV−(𝐶) = {𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑚}

Enc−(𝐶) =
(︁ ⋁︁

1≤𝑖≤𝑚

𝑣𝑖

)︁
∧

⋀︁
1≤𝑖≤𝑚

(¬𝑣𝑖 ∨ ¬𝜌𝑖)

Likewise, the function Enc+ is used to map a set 𝐶 onto a CNF that encodes it
in non-negated form using the Tseitin encoding [23] and EncV+ represents the neces-
sary variables. The number of variables needed here is higher than for EncV−, as one
variable is introduced for every term in the DNFs of 𝐶.

In line 3 of the algorithm, it is checked whether 𝐶 has a false-positive. A false-
positive can be found by obtaining a satisfying assignment to the formula

⋀︀
(𝑐,𝜌)∈𝐶 𝜌

∧¬𝜓. However, when 𝜓 is in prenex-normal form, negating 𝜓 requires a re-encoding to
get ¬𝜓 back into prenex-cnf. In Algorithm 3, this problem is circumvented by searching
for a witness for the non-universality of

⋁︀
(𝑐,𝜌)∈𝐶 ¬𝜌∨𝜓 instead (which is the negation

of the former formula).
Whenever a false-negative is found, all DNFs in 𝐶 for which the false-negative

is not a model are updated to change this fact. At the end of the algorithm (starting
with line 22), redundant terms in the DNFs and redundant literals are identified using
standard SAT solving (lines 26 and 32), and then removed.

4 QBF Solver Modification

All operations on open QBF formulas can easily be translated to the closed QBF case as
follows: checking for satisfiability of an open QBF formula 𝜓 over 𝑉 amounts to testing
if ∃𝑉.𝜓 ≡ true, and checking the non-universality of an open QBF formula 𝜓 amounts
to testing if ∀𝑉.𝜓 ≡ false. In the former case, the solver must be able to output a
partial model of 𝜓. This is supported by many modern QBF solvers when the outermost
quantification level is existentially quantified, which is the case for ∃𝑉.𝜓 ≡ true.
For the non-universal (unsatisfiable) case, where the outermost quantification level is
universal (∀𝑉.𝜓 ≡ false), our QBF solver oracle needs to output a trace, or path, that
leads to an unsatisfiable branch of the search space. This is referred to here as a co-
model.

In this work we use the QBF solver QuBE 7.2 [15]. QuBE is a state-of-the-art DPLL
search-based solver designed to take closed formulas as input, where 𝑉 = ∅. This
obstacle is circumvented by making free variables quantified as described above, and
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Algorithm 3: CDNF learning using a QBF solver as oracle
Data: An open QBF instance 𝜓 = 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.𝜑 over the set of variables 𝑉
Result: The set of its models represented as CDNF 𝜓′

begin
𝐶 := ∅1
while true do2

if 𝜌 := ∃𝑠,EncV−(𝐶).𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.((𝜑 ∨ 𝑠) ∧ (Enc−(𝐶) ∨ ¬𝑠)) is3
non-universal then
𝑓 = co-model of 𝜌4
𝐶 := 𝐶 ∪ {(𝑓, false)}5

if 𝜌 := ∃EncV−(𝐶).𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.𝜑 ∧ Enc−(𝐶) is satisfiable then6
𝑓 = model of 𝜌7
𝐶′ = ∅8
for (𝑐, 𝜂) ∈ 𝐶 do9

if 𝑓 |= 𝜂 then10
𝐶′ = 𝐶′ ∪ {(𝑐, 𝜂)}11

else12
for 𝑣 ∈ 𝑉 do13

if 𝑐(𝑣) ̸= 𝑓(𝑣) then14
𝑓 ′ = 𝑓 ∖ (𝑣 ↦→ 𝑓(𝑣)) ∪ (𝑣 ↦→ 𝑐(𝑣))15
if 𝑄1𝑥1.𝑄2𝑥2. . . . 𝑄𝑛𝑥𝑛.𝜑 ∧ term(𝑓 ′) is satisfiable then16
𝑓 := 𝑓 ′17

𝜂′ =
(︁⋀︀

𝑣∈𝑉,𝑓(𝑣)=true,𝑐(𝑣)=false 𝑣
)︁
∧
(︁⋀︀

𝑣∈𝑉,𝑓(𝑣)=false,𝑐(𝑣)=true ¬𝑣
)︁

18

𝐶′ = 𝐶′ ∪ {(𝑐, 𝜂 ∨ 𝜂′)}19

𝐶 := 𝐶′20

else21
for (𝑐, 𝜂) ∈ 𝐶 do22

for 𝑡 ∈ terms(𝜂) do23
𝜂′ :=

⋁︀
𝑡′∈terms(𝜂)∖{𝑡} 𝑡

′
24

𝐶′ := 𝐶 ∖ {(𝑐, 𝜂)} ∪ {(𝑐, 𝜂′)}25
if ∃𝑉,EncV+(𝐶),EncV−(𝐶′).(Enc+(𝐶) ∧ Enc−(𝐶′)) ≡ false then26
𝐶 := 𝐶′ ∪ {(𝑐, 𝜂′)}27

else28
for 𝑙 ∈ lits(𝑡) do29
𝜂′ :=

⋁︀
𝑡′∈terms(𝜂)∖{𝑡} 𝑡

′ ∨
⋀︀

𝑙′∈lits(𝑡)∖{𝑙} 𝑙
′

30

𝐶′ := 𝐶 ∖ {(𝑐, 𝜂)} ∪ {(𝑐, 𝜂′)}31
if ∃𝑉,EncV−(𝐶),EncV+(𝐶′).(Enc−(𝐶) ∧ Enc+(𝐶′)) ≡ false then32
𝐶 := 𝐶′ ∪ {(𝑐, 𝜂′)}33

return 𝜓′ =
⋀︀

(𝑐,𝜂)∈𝐶 𝜌34

end
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pushing them to the outermost quantifier level. Furthermore, QuBE incorporates many
modern techniques: with respect to this paper, it includes for instance pure/don’t care
literal detection [12], conflict and solution analysis with solution cube minimization
and learning [13,14,20], and an advanced preprocessor [16] that allows it to achieve
unmatched performance when compared to the pure search-based algorithm. However,
many of these advanced techniques have to be modified in order to produce correct
partial models and co-models of the input formula.

Both the preprocessor and the solver were modified in order to keep information
on the outermost quantified variables in a slightly more advanced way than a plain use
of don’t touch literals techniques (also called frozen literals) as previously done, e.g.
in [19]. Indeed, either existential or universal variables are selectively “not touched”
according to the outermost binding quantifier.

4.1 Preprocessing Phase

The preprocessor must behave in a slightly different way depending on the quantifier
at the highest level of the prefix of the input formula. In case this is an existential
quantifier, no variable elimination nor variable renaming techniques —such as equiv-
alence reasoning, variable elimination by Q-resolution, and the subsumption through
resolution (self-subsumption) that are not model preserving transformations which can
be applied to existential variables— are performed on don’t touch variables. Rather,
unit and pure literals can still be given a value, simply adding it to the model. In the
second case, where the input formula is bound by a universal quantifier, no preprocess-
ing techniques have to be deactivated. Basically, the only rules of inference normally
applied to universal variables are pure literal detection and universal reduction, also
known as clause minimization [18]. Universal pure literals are immediately pushed into
the current model: Note, by the definition of universal pure literal in Section 2, that this
valuation to the variable will be sound in order to falsify the clause in case the formula
is unsatisfiable. The universal reduction rule states that in a clause, whose literals have
been simplified according to their evaluations, the literals quantified at the innermost
prefix level among all the others can be removed if universal. This operation is per-
formed every time a clause is added to the matrix — for instance, when a resolvent
computed in a Q-resolution step substitutes its two antecedents, and every time a clause
is simplified (e.g. when in a clause the existential literal 𝑙 is deleted because ¬𝑙 is unit).
Whenever a universal reduction rule is applied, we track the universal literals being
deleted: if all the literals in the clause are eliminated, resulting in the empty clause that
proves the unsatisfiability of the whole formula, those literals are pushed into the model
with their sign flipped.

4.2 Search Phase

During the search, in order to extract the model we have to record the value given to the
outermost quantified variables as soon as a conflict occurs or a solution is found. This
is done selectively for conflicts if the outermost quantifier is existential, or for solutions
when the outermost quantifier is universal. When the solving procedure completes the
exploration of the search space, the assignment values saved previously can be eligible
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to be included into the model. Indeed, because of the on-the-fly universal reduction
performed by the solver during both exploration and backtrack phases on the clauses
(respectively, its dual existential reduction being performed on the solution cubes), it
may be the case that some valuations must be changed, or even further variables must
be pushed into the model as well. This can happen when their values have already been
taken from the assignment stack and put into the model or no valuation is currently
given. In these situations, the valuation must be either flipped in case it is currently
satisfying the clause/cube, or forced in case it has no valuation yet. Consider the QBF
𝜙 = ∀𝑦1𝑦2∃𝑥3𝜑 and the empty clause 𝑦1 ∨ 𝑦2 ∨ 𝑥3 ∈ 𝜑. Assume that 𝑦2 is a decision
literal at level 𝑑, and ¬𝑥3 is assigned because of unit propagation at the same decision
level 𝑑. No value was given to |𝑦1|. As soon as the conflict occurred, the assignment to
the outermost quantified universal variables was cached as 𝑦2. Since the empty clause
has led the conflict analysis to the root of the search tree, witnessing the unsatisfiability
of the whole QBF, the model has to be modified as follows: ¬𝑦1 is added, and the value
for |𝑦2| is flipped into ¬𝑦2.

5 Applications of ALLQBF solving

In this section, we sketch two applications of ALLQBF solving. The aim of this section
is twofold: first of all, our experimental evaluation in the next section is based on bench-
marks from these two applications. Second, we want to show the interested reader why
the transition from plain QBF solving to ALLQBF solving is such an interesting one.

5.1 Synthesis of Reactive Systems

In formal verification, one analyses a system for correctness with respect to a speci-
fication after it has been designed. The idea behind synthesis is that we can actually
construct a system directly from the specification, and save the manual work of actu-
ally designing it. After choosing a formal specification language, and describing which
inputs and outputs the system under design has, synthesis is essentially a push-button
technique.

On the technical level, synthesis is typically reduced to solving a game with an 𝜔-
regular winning condition. A play in this game represents a trace of the system to be
synthesized, and plays that are winning for a designated system player in turn repre-
sent traces that are allowed by the specification. Winning plays are of infinite length,
meaning that the system they represent has no predefined point of going out of service.
Games frequently have huge state spaces, but are representable in a symbolic way. De-
termining the positions in the game from which the system player wins is typically done
by evaluating a fixed point expression. For example, in case of a safety specification,
the synthesis problem reduces to safety game solving, and the winning positions are the
ones that are not in the attractor of the bad positions, i.e., the ones from which the sys-
tem player can enforce never to visit any of the bad states. Using a quantified Boolean
formula, we can represent the problem if for a position in game there exists an output
such that for every input, a non-bad state is reached. By performing ALLQBF solving
on this formula, we obtain a small representation of all of these positions if the game
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transition function has a small encoding as CNF formula. Then, we can plug in the
negation of this positions set as the new set of bad states, and obtain a formula whose
models represent the positions from which the system player does not lose in two steps.
Iterating this idea until we reach a fixed point finally gets us the set of states that are
winning for the system player.

Currently, synthesis tools use BDDs [10] or anti-chains [11] for symbolic reason-
ing, which are both techniques with well-known scalability limits. Plain QBF solving
has been proposed earlier for bounded safety game solving [1], but was found to have
a bad performance there. For the initial experimental evaluation in this paper, we used
a modified version of the UNBEAST synthesis tool [10] that lazily tracks the operations
performed on BDDs and generates QBF instances to represent pre-fixed points in the
game solving fixed point computation when synthesizing a load balancer. As the com-
putations performed by UNBEAST are optimized towards BDD usage, we refrain from
declaring a “winner“ in this setting.

5.2 Monitor Synthesis

Consider a safety-critical sequential circuit. Adding a runtime monitor for such a circuit,
that observes the transitions in the system and produces a warning signal if the system is
about to enter a bad state, allows warning other parts of the system that the output of this
circuit should not be trusted any more. This way, malicious bit flips in the hardware, as
well as assumptions about the system environment that actually do not hold in practice,
can often be found even after the system is deployed.

ALLQBF solving can help us in constructing such a monitor. For some value of 𝑘,
we encode the problem “for a given state in the system, along some trace of length 𝑘
starting from there, we do not visit a bad state” into an open QBF formula, and leave
the starting state variables open. A CDNF, DNF or CNF representation for all of these
states can then be interpreted as a circuit that checks if the system is still in a state that
is not potentially bad, and outputs false if this is not the case.

For our experimental evaluation in the next section, we used the single-property
circuits from the hardware model checking competition HWMCC’11 [6] and translated
the monitor synthesis problem for 𝑘 = 2 into an open QBF formula using a standard
Tseitin encoding.

6 Experimental Results

We evaluate a prototype implementation of the learning techniques presented in Section
3 using a version of QuBE 7.2 that has been modified as described in Section 4. Before
learning, we simplify the open QBF instance by applying a restricted version of QuBE’s
preprocessor that does not alter its set of models.

The aim of this experimental evaluation is to show that the proposed approaches
already scale to systems of practical size. Due to the fact that ALLQBF solving is a
relatively new topic, comparing against other solvers is difficult. For example, the QBF
solver QUANTOR [4] is based on removing quantifiers by resolution and expansion, and
in principle it is possible to obtain a CNF representation of the set of models of an
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open QBF formula. However, it comes with no possibility to ensure that the open (or
outermost existential) variables remain intact and thus cannot be used.Techniques for
removing only existential variables cannot handle the universal ones dealt with here.

All computation times given in the following are obtained on a Sun XFire computer
with 2.6 Ghz AMD Opteron processors running an x64-version of Linux. The memory
usage was never observed to exceed 2GB.

6.1 Synthesis of Reactive Systems

Out of the 3411 game solving/synthesis benchmarks, the maximally allowed computa-
tion time of 3600 seconds was enough for CDNF learning to work in 3307 cases, CNF
learning to finish in 3358 cases, and DNF learning to succeed in 3297 case. Figure 1
shows the numbers of instances learned over time, while Figure 2 compares the number
of literals in the learned model set representation. Table 1 shows the properties of some
example instances used in this comparison.

It can be seen that in many cases, the result sizes of the techniques coincide - then,
DNF learning is often the fastest method. However, for complicated benchmarks, when
granting more time for solving an instance, the CNF variant overtakes the DNF variant
in terms of instances solved. The experiments show that the CDNF learning method is
a reasonable compromise between the two.

Table 1: Properties of some example problem instances in the game solving bench-
marks. For every instance, “# V.”, “# F.” and “# Clauses” denote the numbers of vari-
ables, free variables and clauses in the instance, respectively. The column “P.S.-time”
contains the time for plain QBF solving the instance. For CDNF, DNF and CNF learn-
ing, the sizes (s.) of the resulting formulas and the time (t.) to obtain these are reported.
All times are given in seconds.

Instance # # # P.S. # CDNF CNF DNF
V. F. Cl. -time Models s. t. s. t. s. t.

load_16.xml_SAT_4_10 1185 18 1349 0.04 90112 10 3.62 9 2.12 12 1.83
load_18.xml_SAT_4_10 1935 28 2179 0.06 9.22747e+07 10 7.02 9 3.90 12 3.05
load_31.xml_SAT_4_10 11299 108 13090 0.16 1.08939e+29 31 192 19 286 42 45.6
load_33.xml_SAT_5_7 3396 49 3588 0.08 1.5668e+13 14 21.4 21 21.2 31 6.90
load_35.xml_SAT_5_7 5401 75 5746 0.11 2.62866e+20 16 50.7 23 60.3 39 16.0
load_57.xml_UNSAT_5_6 2924 37 4330 0.05 unknown timeout timeout timeout
load_72.xml_UNSAT_4_3 1181 37 1470 0.01 3.70482e+09 timeout 109 645 timeout
load_74.xml_SAT_2_8 10402 73 10115 0.14 2.95148e+20 6 49.6 6 69.3 6 8.09
load_75.xml_SAT_2_9 14390 88 14425 0.21 9.67141e+24 6 95.2 6 130 6 13.4

6.2 Monitor Synthesis

Out of the 465 monitor synthesis benchmarks, in 286 cases, the learning process did not
finish for any mode within a time limit of 15 minutes. In 65 additional cases, the set of
models was empty or contained all possible variable valuations (and is therefore unin-
teresting for the purpose of monitoring). Table 2 shows some representative remaining
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Fig. 1: Graph showing how many of the reactive synthesis benchmarks could be solved
(i.e., the set of their models is learned) within certain time bounds.

CDNF

CNF

1 10 100 500

1

10

100

500

(a) CDNF size vs. CNF size

CDNF

DNF

1 10 100 500

1

10

100

500

(b) CDNF size vs. DNF size

CNF

DNF

1 10 100 500

1

10

100

500

(c) CNF size vs. DNF size

Fig. 2: Formula size comparisons of the learning results for CDNF, CNF, and DNF on
the game solving benchmarks.

cases. Compared to the game solving benchmarks, it can be seen that the performance
is worse, which is due to the fact that the monitor synthesis benchmarks are harder to
solve: they have more variables, more clauses, and are derived from challenging hard-
ware model checking problems.

For monitor synthesis, CDNF learning is not as competitive as in the game solving
case, and DNF learning is more advisable to use here than CNF learning. Figure 3
shows the performance.

7 Conclusion

We have presented a way to turn a search-based QBF solver into an ALLQBF solver
for open quantified Boolean formulas by using computational learning. The resulting
set of models of a formula is represented either in DNF, CNF, or CDNF form, and we
gave suitable learning algorithms for all of these forms.
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Table 2: Properties of some example problem instances in the game solving bench-
marks. The notation is the same as in Table 1.

Instance # # # P.S. # CDNF CNF DNF
V. F. Cl. -time Models s. t. s. t. s. t.

bob3 1232 74 3218 0.1 7.41919e+21 timeout timeout 1211 485
bob9234redmiter 1843 119 4627 0.15 2.10288e+35 timeout 384 798 358 371
irstdme4 2534 124 6088 0.21 1.66153e+37 25 245 46 180 15 48.9
pdtvisgigamax0 2276 16 6566 0.21 64512 timeout 7 185 7 21.7
vis4arbitp1 747 23 2024 0.07 4.18867e+06 timeout 652 389 331 29.3

Time

% Solved
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10%

20%

30%

40% DNF Learning

CNF Learning
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Fig. 3: Graph showing how many of the monitor synthesis benchmarks could be solved
(i.e., the set of their models is learned) within certain time bounds.

The initial evaluation of the approach in this paper shows its potential. We conjec-
ture that a future tighter integration of the solver and the learning algorithm will provide
a significant further speed improvement.
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