
A Fragment of Linear Temporal Logic for
Universal Very Weak Automata?

Keerthi Adabala and Rüdiger Ehlers

University of Bremen, Bremen, Germany

Abstract. Many temporal specifications used in practical model check-
ing can be represented as universal very weak automata (UVW). They
are structurally simple and their states can be labeled by simple tempo-
ral logic formulas that they represent. For complex temporal properties,
it can be hard to understand why a trace violates a property, so when
employing UVWs in model checking, this information helps with inter-
preting the trace. At the same time, the simple structure of UVWs helps
the model checker with finding short traces.
While a translation from computation tree logic (CTL) with only univer-
sal path quantifiers to UVWs has been described in earlier work, complex
temporal properties that define sequences of allowed events along compu-
tations of a system are easier to describe in linear temporal logic (LTL).
However, no direct translation from LTL to UVWs with little blow-up
is known.
In this paper, we define a fragment of LTL that gives rise to a simple
and efficient translation from it to UVW. The logic contains the most
common shapes of safety and liveness properties, including all nestings of
“Until”-subformulas. We give a translation from this fragment to UVWs
that only has an exponential blow-up in the worst case, which we show to
be unavoidable. We demonstrate that the simple shape of UVWs helps
with understanding counter-examples in a case study.

1 Introduction

Complex reactive systems often have complex specifications. To obtain a suffi-
cient degree of quality assurance, a model of the system can be verified against
the specification. Automata-based model checking is a classical approach in this
context, as it permits the specification to be written in a powerful logic such as
linear temporal logic (LTL, [1]), which is then translated to an automaton for
the verification process [2].

Whenever the system to be verified is found to violate the specification, a
model checker can compute a (lasso-shaped) counter-example trace [3,2]. Such
traces are often lengthy and the problem of explaining why the system behaves
in the way observed in the trace has received some attention in the literature
[4,5]. However, finding out why the behavior actually violates the property is

? This work was supported by DFG grant EH 481/1-1 and the Institutional Strategy
of the University of Bremen, funded by the German Excellence Initiative.

2 Keerthi Adabala and Rüdiger Ehlers

also difficult [5]. While the trace includes a run of the automaton built from
the specification, the various optimizations in the translation process from the
specification to the automaton normally lead to a loss of structure. Hence, the
run of the automaton does not give rise to an easy interpretation of the reason
for the violation of the specification written by a system engineer. When not op-
timizing an automaton, it frequently becomes huge, which translates to a higher
computational workload and can also lead to longer counter-example traces.

These observations give rise to the question if we can help a model checker
with finding easy to interpret counter-example traces by employing very struc-
tured, but still small automata in the verification process. We present an ap-
proach for this purpose in this paper that is based on universal very weak ω-
automata. Maidl [6] showed that this automaton class captures exactly the spec-
ifications that are representable both in linear temporal logic (LTL) and compu-
tation tree logic (CTL), where in the latter case only universal path quantifiers
are used. Universal very weak automata (UVWs) expose the sequences of events
that must not lead to errors, deadlocks or livelocks. They can be decomposed
into a finite number of so-called simple chains that represent these sequences
of events. There are multiple reasons for why this makes them interesting for
counter-example trace generation:

1. Whenever a property is violated, we can search for counter-example traces
for all simple chains. The information for which of these chains a violation
can be found is helpful for pinpointing the error.

2. Counter-example traces for different simple chains can have different lengths,
so the shortest one can be reported to the system engineer.

3. Along a trace, a UVW run can move to a different state only few times. These
state changes represent points in time in which interesting events happen,
so they can be highlighted to the engineer.

4. Every state in a UVW can be labeled by a relatively simple temporal logic
formula that the state represents, and no two states in a minimized automa-
ton are labeled in the same way, which eases the interpretation of a trace by
the engineer.

So for those specification parts that can be represented as universal very weak au-
tomata, employing them for model checking the specification part simplifies de-
bugging the model and hence speeds up the iterations of model and specification
refinement that are characteristic for a model-based system development process.

Despite their nice properties, universal very weak automata are not well-
studied. It is for example currently unknown how much blow-up is unavoidable
when translating from LTL to UVW. Earlier work [7] contained a translation
construction, but it requires the input to be represented as a deterministic Büchi
automaton, which implies at least a doubly-exponential translation time and
potentially large automata. Furthermore, the construction computes the UVW
in an iterative way, which further increases the computation times.

To counter this problem, we provide a characterization of a subset of lin-
ear temporal logic (LTL) that permits an efficient translation to universal very
weak automata in this paper. This characterization is given in the form of a

A Fragment of LTL for Universal Very Weak Automata 3

context-free grammar and captures, for example, all possible nestings of the Un-
til -operator of LTL. We provide a translation procedure from formulas in the
grammar to UVW. All states in the resulting UVWs represent languages of
Boolean combinations of subformulas in the LTL specification. While we do em-
ploy simulation-based state minimization techniques, they are used in a way in
which they do not invalidate the temporal logic state labeling in the UVW case.
At the same time, no two states represent the same LTL (sub-)formulas, which
can happen for minimally-sized classical Büchi automata, which are normally
used in model checking. Hence, the state information in counter-example traces
produced by a model checker is easy to interpret.

We demonstrate in a case study (using the model checker spin [8]) that the
structure of the specification UVWs helps with finding the root cause of a spec-
ification violation. Since our LTL fragment covers the majority of specification
shapes found in the literature, our construction is applicable in many application
contexts.

1.1 Related Work

Translating properties from linear temporal logic (LTL) to automata is a classical
topic in the formal methods literature as it is a required step for automata-based
model checking (or reactive synthesis). When translating to non-deterministic
Büchi automata, an exponential blow-up cannot be avoided [9], but by apply-
ing simulation-based minimization of the resulting automaton, automata sizes
can be substantially reduced in practice [10,3]. Since model checking problems
generally become easier when employing small automata, they are normally pre-
ferred. It has been noted, however, that the efficiency of model checking is also
influenced by the shape of the specification automata. In particular, automata
that delay the first visit to an accepting state have been found to lead to better
model checking efficiency [3].

Another special automaton shape are very weak ω-automata. In such au-
tomata, all loops are self-loops, and universal very weak automata (UVW) have
been identified as the automaton class that exactly characterizes the word lan-
guages that can be represented in LTL and for which the containment of all paths
in a computation tree in the language can also be represented by a formula in
computation tree logic (CTL) using only universal path quantifiers [6] (abbre-
viated as ACTL). This fragment is interesting as it unifies the two commonly
used specification logics and because UVWs can be decomposed for distributed
model checking, as we show in Section 2. While Maidl gave a construction to
translate from ACTL to UVW whenever possible, the subset of LTL for which
she gave a translation to UVW is highly restrictive and does not even allow
to express aU b (a holds until b holds at least once). Effectively, her approach
requires the specification engineer to encode the structure of a UVW into the
logical specification. The grammar that we define in the next section does not
have this restriction and allows arbitrary nestings of U operators. It also includes
Maidl’s LTL subset as a special case.

4 Keerthi Adabala and Rüdiger Ehlers

All of the automata translations discussed so far compute automata that can
have a very complicated structure and that are hard to interpret. For exam-
ple, one of the classical approaches to translating from LTL to Büchi automata
involves de-alternation [11], which introduces breakpoints into the automaton
structure. The main alternative translation appraoch involves de-generalizing
generalized Büchi automata [12], which introduces a similar automaton struc-
ture. Subsequent automaton minimization steps [10] lead to additional inco-
herence between the automaton structure and the original specification. As a
consequence, observing a run of an automaton does not help to explain why a
trace satisfies a specification or not.

To solve this issue, Basin et al. [5] defined a calculus for annotating a counter-
example obtained from a model checker (which has a lasso shape) with an expla-
nation why it violates a given LTL property. Their approach is only applicable
after a lasso has been computed, and there is no guarantee that the model checker
picks a lassos that has an easy to explain reason for violating the specification.
While short lassos make this more likely, their length is still influenced by the
structure of the specification automaton. Asking for a counter-example trace of
the form uvω with |u| + |v| as short as possible would solve this problem, but
approximating the minimal attainable length |u| + |v| by any factor has been
shown to be NP-hard [13], unlike finding shortest lassos.

In the approach that we present in this paper, we solve this problem by
computing automata that have a simple structure and whose states are labeled
by the LTL property that the state represents. The automata can be decomposed
so that a model checker that searches for short lassos also searches for lassos that
have an easy explanation.

2 Preliminaries

An ω-word automaton over some finite alphabet Σ (which we assume to be 2AP

for some set AP for the scope of this paper) is a tuple A = (Q, δ,Q0,F) with
the finite set of states Q, the transition relation δ ⊆ Q×Σ×Q, the set of initial
states Q0 ⊆ Q, and the acceptance condition F ⊆ Q.

Given a word w = w0w1 . . . ∈ Σω, we say that A induces an infinite run
π = π0π1 . . . ∈ Qω if π0 ∈ Q0 and for all i ∈ IN, we have (πi, wi, πi+1) ∈ δ. For
the scope of this paper, we are only interested in infinite runs.

Word automata come in different types. In this paper, we will consider two
types, namely non-deterministic Büchi automata (NBA) and universal very weak
automata (UVW). For the former, we say that the automaton accepts a word w
if there exists a run π induced by it and A along which states in F occur infinitely
often. For a universal very weak automaton A, we say that it accepts a word w if
for all infinite runs π induced by A and w, we have that states in F appear only
finitely often along π. For an automaton to be a UVW, its states furthermore
need to be ranked, i.e., there exists a ranking function r : Q → IN such that
for every q ∈ Q and q′ ∈ Q, if there exists a x ∈ Σ with (q, x, q′) ∈ δ then
r(q′) < r(q) or q = q′. Intuitively, this means that all loops in the automaton are

A Fragment of LTL for Universal Very Weak Automata 5

q0

q1 q1q2 q1q3

∗

c ∧ a ∧ b
c e

c e

c ∧ a ∧ b

true

q0 q2 q0q1

q′0 q′1

q′′0 q3

true

true

true

c

c

c ∧ a ∧ b

e
e

c ∧ a ∧ b
true

Fig. 1. A UVW and its decomposition into simple UVW chains for the property of
G((a→ b)U c) ∧ GF(dU e)

self-loops (as visualized in Figure 1). Due to the existence of a ranking function,
the acceptance of a word basically boils down to stating that no infinite run
should eventually get stuck in a state q ∈ F . We call F the set of rejecting states
in case of UVWs, and the set of accepting states for NBAs. The language of an
automaton A, denoted as L(A), is defined to be the set of words accepted by A.

If the set AP is suitable for modeling the current state of a system to be
verified, ω-word automata over the alphabet Σ = 2AP serve as an (internal) rep-
resentation of a specification for model checking. They are however cumbersome
to write, so a temporal logic such as linear temporal logic (LTL, [1]) typically
serves as specification language used by system engineers, with the aim to auto-
matically translate LTL properties to automata. LTL enriches Boolean logic by
the addition of the next (X), until (U), weak until (W), release (R), globally (G),
and finally (F) operators, and a formal definition of the logic and its semantics
can be found in [1]. We say that an automaton is equivalent to an LTL formula
if the set of words over 2AP that are models of the LTL formula is the same as
the language of the automaton. A finite word over the character set 2AP is a bad
prefix for some LTL formula ψ if it cannot be extended to a word that satisfies
the formula. A good prefix of some LTL formula ψ is a finite word all of whose
infinite extensions satisfy the LTL formula. A specification for which all words
that violate it have a bad prefix is called a safety specification. A specification
without bad prefixes is called a liveness specification.

In the following, we use subsets of atomic propositions and their characteris-
tic (Boolean) functions interchangeably. A transition (q1, t, q2) for some Boolean
formula t represents transitions from a state q1 to q2 for all x ∈ Σ that satisfy
t. The ⊥ symbol henceforth represents an invalid Boolean formula – applying
any operation to it yields ⊥ again. We also use these notations in figures depict-
ing automata, where states are given as circles, states in F are doubly-circled,
and transitions are depicted by arrows that are labeled by Boolean formulas t.
When depicting UVWs, we furthermore draw them in a way that their ranking

6 Keerthi Adabala and Rüdiger Ehlers

functions become apparent, e.g., by letting all non-self-loop transitions lead to
the right or down.

In the verification literature, non-deterministic Büchi automata are often
used to represent a set of traces that a system to be verified should not permit
and hence represent the complement of a specification. By switching from non-
deterministic to universal branching (as common in the literature on ACTL ∩
LTL [6,14]), we avoid this complementation in reasoning, as UVWs accept all
traces that do satisfy the specification. The complement of a specification repre-
sentable as a UVW can be represented as a nondeterministic Büchi automaton
(with exactly the same automaton tuple elements).

A UVW A can be decomposed into multiple sub-automata A1, . . . ,An (for
some n ∈ IN), where each sub-automaton represents one path through A, as
shown in Figure 1. We call these paths simple chains, and formally, the intersec-
tion of their languages is the language of A, i.e., we have L(A1)∩L(A2)∩ . . .∩
L(An) = L(A).

3 A Temporal Logic for Universal Very Weak Automata

In this section, we give a context-free grammar that captures a subclass of LTL
formulas and a translation from this subclass to UVWs. Without loss of general-
ity, we assume that occurrences of the negation operator in front of temporal op-
erators have already been pushed inwards, just like in the negation normal form
[2] of LTL. Negation operators located in front of pure Boolean sub-formulas
do not have to be pushed inwards. The grammar for UVWs has the following
components:

χ ::= p | ¬χ | χ ∧ χ | χ ∨ χ | true | false

ψ ::= χ | ψ ∨ ψ | Fψ | φU ψ
φ ::= ψ | φ ∧ φ | φ ∨ φ | Gφ | Xφ | ψRφ | (b ∧ φ)U (¬b ∧ φ) | (b ∧ φ)W (¬b ∧ φ)

In this grammar, p denotes an atomic proposition and b is a Boolean formula
without temporal operators. Such formulas are accepted by the nonterminal χ.
Note that in the last two rules for φ, we assume that the Boolean formula b is
the same for both occurrences.

The acceptance of an LTL formula by the top-level nonterminal φ indicates
that the LTL formula can be translated to a UVW, as we show below. The
nonterminal ψ represents subformulas for which quitting points can be detected,
which are defined as follows:

Definition 1. Let f be an LTL formula with (strict) subformulas S for some
set of propositions AP. A prefix word w = w0 . . . wn ∈ (2AP)∗ is called a quitting
point if there exists a Boolean combination f ′ of subformulas from S such that
for all words u = w0 . . . wn−1wnun+1un+2 . . . ∈ Σω, we have u |= f if and only
if wnun+1un+2 . . . |= f ′.

Quitting points intuitively represent prefix words for some LTL formula for which
the top-level formula does not need to be monitored in order to find out if a word

A Fragment of LTL for Universal Very Weak Automata 7

q0

q1

¬b

¬a ∧ ¬b

∗

aU b

q0

q1

¬d

¬c ∧ ¬d

∗

cU d

q0

q1 q2

q3

acbd

abcd

abcd cabd

ab
cd∗

b d

(aU b) ∨ (cU d)

qI

q0

q1 q2

q3

acbd

abcd

abcd cabd

ab
cd∗

b d

abcd cabd

d

acbd

(aU b)U (cU d)

Fig. 2. Building a UVW for the LTL formula f = (aU b)U (cU d) in a step-by-step
way from the UVW for the subformulas. Rejecting states are doubly-circled.

satisfies the formula after the point has been reached. For example, for the LTL
formula f = (aU b)U c, any prefix word that ends with a character that includes
c is such a quitting point, as after a c is seen along a trace, the outer-level
obligation encoded in f is satisfied. However, when a quitting point has been
reached, this does not necessarily mean that the satisfaction of the LTL formula
is already established. For example, for f = (aU b)U c, the prefix word {a}{a, c}
is a quitting point, but the remainder of the word still has to satisfy aU b for f
to be satisfied along the complete trace.

In the grammar given above, ψ has been carefully defined to only contain
subformulas for which quitting points can be detected without recall for the
history of the prefix word observed earlier. This enables us to construct UVWs
for a specification with liveness objectives. Take for example the specification
f = (aU b)U (cU d). The sub-formula (aU b) has all words ending with b as
quitting points, whereas the second sub-formula has all words ending with d as
quitting points. We can implement a translation to a UVW by adding one UVW
state for each until-subformula f1 U f2 such that at least one run stays in this
state until a quitting point has been seen, and until that is the case, the run
branches to a state representing that f1∨f2 should hold. The overall translation
is depicted in Figure 2. Note that a disjunction of two sub-formulas that enable
history-free detection of quitting points has this property again, which we use
in the translation.

The (recursive) Translate function that builds on this idea is given in
Algorithm 1. The function takes an LTL formula and returns a pair consisting
of a UVW for the LTL formula and a Boolean formula that encodes the set of
characters with which quitting point prefixes for the LTL formulas end. For our
implementation that we evaluate in Section 5, we cache the results of calls to
Translate on an LTL subformula in case it occurs multiple times for the input
formula. The number of generated UVW nodes is then at most exponential
in the size of the formula (as every node generated by the algorithm can be

8 Keerthi Adabala and Rüdiger Ehlers

Algorithm 1 Translation procedure from an LTL subformula to a UVW and
the characters that indicate that a quitting point has been just seen.

1: function Translate(f)
2: if f = t for some subformula t without temporal operators then
3: A ← ({q0, q1}, {(q0,¬t, q1), (q1, true, q1)}, {q0}, {q1})
4: return (A, t)
5: if f = f1 ∧ f2 then
6: ((Q1, δ1, Q1

0,F1), X1)← Translate(f1)
7: ((Q2, δ2, Q2

0,F2), X2)← Translate(f2)
8: A ← (Q1]Q2, δ1 ∪ δ2, Q1

0 ∪Q2
0,F0 ∪ F1)

9: return (A,⊥)

10: if f = f1 ∨ f2 then
11: (A1, X1)← Translate(f1), (A2, X2)← Translate(f2)
12: return (A, X1 ∨ X2), where A is the product of A1 and A2, where every

state is rejecting for which both factor states are rejecting.

13: if f = f1 U f2 then
14: ((Q1, δ1, Q1

0,F1), X1)← Translate(f1 ∨ f2)
15: ((Q2, δ2, Q2

0,F2), X2)← Translate(f2)
16: A ← (Q1] Q2] {q0}, {(q0, x, q1) | ∃q10 ∈ Q1

0, (q
1
0 , x, q1) ∈ δ1, x 6|= X2} ∪

{(q0, x, q1) | ∃q20 ∈ Q2
0, (q

2
0 , x, q1) ∈ δ2, x |= X2} ∪ {(q0, x, q0) | x 6|= X2}, {q0},F0 ∪

F1 ∪ {q0})
17: return (A, X2)

18: if f = f2R f1 then
19: ((Q1, δ1, Q1

0,F1), X1)← Translate(f1 ∨ f2)
20: ((Q2, δ2, Q2

0,F2), X2)← Translate(f2)
21: A ← (Q1]Q2] {q0}, {(q0, x, q1) | ∃q10 ∈ Q1

0, (q
1
0 , x, q1) ∈ δ1} ∪ {(q0, x, q1) |

∃q20 ∈ Q2
0, (q

2
0 , x, q1) ∈ δ2, x |= X2} ∪ {(q0, x, q0) | x 6|= X2}, {q0},F0 ∪ F1 ∪ {q0})

22: return (A,⊥)

23: if f = Xf1 then
24: ((Q1, δ1, Q1

0,F1), X1)← Translate(f1)
25: A ← (Q1 ∪ {q0}, δ1 ∪ {(q0, true, q1) | q1 ∈ Q1

0}, {q0},F1)
26: return (A,⊥)

27: if f = (b ∧ f1)U (¬b ∧ f2) or f = (b ∧ f1)W (¬b ∧ f2) then
28: ((Q1, δ1, Q1

0,F1), X1)← Translate(f1)
29: ((Q2, δ2, Q2

0,F2), X2)← Translate(f2)
30: A ← (Q1]Q2] {q0}, {(q0, x ∧ b, q1) | ∃q10 ∈ Q1

0, (q
1
0 , x, q1) ∈ δ1} ∪ {(q0, x ∧

¬b, q1) | ∃q20 ∈ Q2
0, (q

2
0 , x, q1) ∈ δ2} ∪ {(q0, b, q0)}, {q0},F0 ∪ F1 ∪K) for K = {q0}

if f = (b ∧ f1)U (¬b ∧ f2) and K = ∅ otherwise
31: return (A,⊥)

labeled by an LTL formula for its language, which is always a disjunction of
subterms present in the original LTL formula). The algorithm does not show the
implementations of the G and F operators, as they are special cases of the other
operators (using the equivalences Gf ≡ trueR f and Ff ≡ trueU f).

The construction is mostly straight-forward. For the disjunction case, we
have to build a product automaton, which can lead to some blow-up.

A Fragment of LTL for Universal Very Weak Automata 9

Theorem 1. Algorithm 1 computes a correct UVW for a given LTL formula
under the assumption that the LTL formula is accepted by the grammar given in
Section 3.

Proof. Before we start with the main part of the proof, we need to show that
for every subformula f1 U f2 and f2R f1 in an overall LTL formula that is
accepted by the nonterminal ϕ, we have that Translate(f2) returns a UVW
with exactly a single initial state. Since both of these temporal operators require
that the operand f2 is accepted by the ψ nonterminal, we only have to prove
this for all subformulas accepted by this non-termininal. For all non-temporal
subformulas, this sub-claim is true, as the UVW computed have exactly two
states each, where only one is initial. This case forms our induction basis. For
the disjunction case (ψ ::= ψ ∨ ψ), the claim is also true as when taking the
product of two UVW with one initial state each, the product also has only one
initial state. Finally, the part of Algorithm 1 for the φU ψ and ψRφ cases all
return UVWs with one initial state each.

Similarly, it can also be shown that for every subformula accepted by the ψ
nonterminal, the second element of the tuple returned by Translate is never
⊥, which we use for the proof.

Now to the main part of the proof. We prove the claim by induction on the
structure of the LTL formula, where we use the induction hypothesis that for
every subformula f , Translate(f) returns a pair (A, X) consisting of

1. a UVW A for f and
2. a subset X ⊆ Σ such that

(a) every prefix word ending with a letter from the subset is a quitting point,
(b) X characterizes the one-letter prefix words that are good prefixes for f ,
(c) every word that is a model of f has to contain a character from X, and
(d) for every prefix word w0 . . . wn ∈ Σ∗ that is a good prefix of f , we have

that wn ∈ X and w1 . . . wn is a good prefix for f as well.
We also call X the set of quitting characters henceforth.

In this definition and henceforth, we treat character sets and LTL formulas that
are free of temporal operators and that characterize such sets interchangeably.
We still use ⊥ to symbolize that no set/no Boolean function is provided.

Induction Basis: The only case in which Translate(f) does not recurse is
when f is free of temporal operators. By the LTL semantics, the returned UVW
should reject exactly the words not starting with a character that satisfies f .
The UVW returned by the function has exactly two states. The non-initial one
rejects all words. The initial one has a transition to the non-initial one that is
taken whenever the first character of an input word does not satisfy f . When-
ever this happens, the word is rejected as a run then visits the second non-initial
state that is rejecting and self-loops on all characters. This implements exactly
the semantics of an LTL formula that is free of temporal operators. The quitting
characters returned along with the UVW are exactly the set of characters satis-
fying f (or, more precisely, for which exactly the words starting with one of them
satisfy f), which is a valid set of quitting characters for f (by its definition).

10 Keerthi Adabala and Rüdiger Ehlers

Induction Step: We do a case split on the type of operator and assume that
for the f1 and f2 sub-formulas, recursive calls to Translate yielded the UVWs
A1 and A2 along with the quitting character sets X1 and X2, respectively.

– Case f1 ∧ f2: In this case, the resulting UVW should accept a word if and
only if both of the UVWs for f1 and f2 accept a word. So all runs of both of
them must accept a word. Under the inductive hypothesis that the UVWs
returned by the calls to Translate(f1) and Translate(f2) are correct,
this is achieved by merging the two UVWs into one and taking the initial
states of both of them as new initial state set. The set of quitting characters is
⊥, which means “does not apply” and is – by definition – a safe return value.

– Case f1 ∨ f2: In this case, the resulting UVW should accept a word if and
only if one of the UVWs for f1 and f2 accept the word. This case uses
a product construction, where given the UVWs A1 = (Q1, δ1, Q1

0,F1) and
A2 = (Q2, δ2, Q2

0,F2), the product UVW A = (Q, δ,Q0,F) with the follow-
ing components is computed:
• Q = Q1 ×Q2

• δ = {((q1, q′1), x, (q2, q′2)) ∈ Q×Σ×Q | (q1, x, q2) ∈ δ1, (q′1, x, q′2) ∈ δ2}
• Q0 = Q1

0 ×Q2
0

• F = F1 ×F2

Let a word be given that is accepted by, w.l.o.g., A1. Then, every trace of
A1 visits rejecting states only finitely often. All runs in A simulate runs of
A1 and A2 in parallel. Since F = F1 × F2, we know that a run for A then
also only visits rejecting states finitely often.
On the other hand, let a word be rejected by both A1 and A2. Then there
exist rejecting runs for both A1 and A2, and by the construction of A, the
product of these rejecting runs is a run of A. Since both rejecting runs even-
tually get stuck in rejecting states, the product run in A also eventually gets
stuck in a state in F1 × F2 = F , and hence is rejecting as well. Thus, the
word is rejected by A as well.
If furthermore a character set X ⊆ Σ is returned by the Translate function
for both f1 and f2 (i.e., not the ⊥ element is returned), then the function
definition declares its own returned character set to be the union of the
character sets for f1 and f2. By the inductive hypothesis, any word starting
with a character in the union of the characters satisfies one of f1 and f2.
Likewise, every word without characters in this union is, by the inductive
hypothesis, rejected by both A1 and A2. The same argument can be made
for the conditions 2.(a) and 2.(d) of the inductive hypothesis given above.

– Case f1 U f2: We assume that X2 has the properties stated in the induc-
tive hypothesis. By the definition, a word can only be a model of f1 U f2 if
eventually, a character from X2 occurs in the word. The construction from
Algorithm 1 for this case generates an initial state that is not left until such
a character is read. Before the occurrence of this character, the outgoing
transitions of the state are taken, which model the transitions leaving the
initial states of a UVW for f1 ∨ f2.
So see why this construction is correct, let a word be given that satisfies
f1 U f2, where at positions 0 to j, f1 is satisfied and at position j + 1, f2 is

A Fragment of LTL for Universal Very Weak Automata 11

satisfied. Let, without loss of generality, j be the least possible such index.
A character from X2 may first occur at a position j′ ≥ j (it cannot occur
earlier because otherwise j would not be the earliest possible such index).
From positions 0 to j, the word surely satisfies f1 ∨ f2 as it satisfies f1.
At position j + 1 it satisfies f2. In between positions j and j′ in the word,
we however now also know that f2 is satisfied from there by the inductive
hypothesis for X2: by it, the word from position j onwards is a good prefix
for f2, and every suffix of this good prefix is a good prefix as well (except
for the empty suffix). This includes the words from positions j + 1, j + 2,
. . ., until the character from X2 occurs along the trace.
Note that the UVW generated for f1 U f2 also does not accept too many
words, as it enforces f1 U f2 to hold until a letter has been seen that guar-
antees that f2 is met. If f1 ∨ f2 is always satisfied before this point, this
implies that f1Uf2 holds at the beginning of the word as well.
The algorithm returns X2 as the set of quitting characters. This is correct as
1. no word not containing a character in X2 can satisfy f1 U f2
2. If a word satisfies f1Uf2 from the first character, then it also satisfies
f1Uf2 from the second character onwards if f2 is only satisfied later.
If f2 is satisfied from the first character onwards, then by the inductive
hypothesis, the suffix of the word satisfies it as well (as otherwise X2

would need to be ⊥).
– Case f1R f2: This case is analogous to the f1 U f2 case, except that ⊥ is

returned as quitting character set (which is always safe).
– Case X f1: In this case, a new UVW is generated that has one initial state

from which all initial states of the UVW for f1 are reached unconditionally.
This implements exactly that the first character of a (suffix) trace is ignored.
The algorithm returns ⊥ as quitting character set, which is a safe choice.

– Cases (α ∧ φ)U (¬α ∧ φ) and (α ∧ φ)W (¬α ∧ φ): These special cases are
similar to the f1 U f2 and f1R f2 cases above, except that quitting charac-
ter sets are not needed for determining whether at least one run should stay
in the initial state added to A1 and A2 by the construction. Instead, the
b condition is used to detect when every run should leave the added state.
As quitting character set, the Translate function returns ⊥ in this case,
which is always safe.

The termination of the algorithm for every possible LTL formula follows from
the fact that the algorithm only recurses on disjunctions of sub-formulas that
are present in the original LTL specification and it always recurses into strict
subformulas. Note that this observation also shows that the computed automata
have a number of states that is at most exponential in the length of the LTL
formula. Cichon et al. [9] showed that the smallest non-deterministic Büchi au-
tomata for LTL formulas of the shape

∧
1≤i≤n Fp1 need a number of states that

is exponential in n in general. Since the negation of these LTL formulas are
accepted by the grammar given above, it follows that an exponential blow-up
for translating LTL formulas in our grammar to UVWs is unavoidable (as every
UVW for a specification is also a non-deterministic Büchi word automaton for
the complement language).

12 Keerthi Adabala and Rüdiger Ehlers

After constructing a UVW with the procedure from Algorithm 1, it makes
sense to minimize it. Unlike in the general Büchi automaton case [10], in UVWs
it is always sound to merge states with the same language. The only case in
which this would be unsound is if both states lie in the same strongly connecting
component, which cannot happen in UVWs. When merging UVW states, we
can simply reroute all transitions to a higher-ranked state to the lower-ranked
states (for some arbitrary valid ranking function). In addition we merge states
that are reachable using the same prefix words, and if for some pair of states q1
and q2, we have that q1 has a language that is a subset of the language of q2, but
whenever q2 is reached for some prefix trace, so is q1, we remove q2 (if q1 and
q2 are not reachable from each other). For simplicity, we approximate language
inclusion by fair simulation [10].

4 Discussion

Before looking into how UVWs can simplify the debugging process of models in
the next section, we want to discuss the merits and drawbacks of the grammar
and construction given in the preceding section.

The grammar that we defined in the preceding section does not support the
use of the ∧ operator for the nonterminal ψ. This is a necessity. For example, the
property φ = aU (b ∧ (cU d)) cannot be represented as a UVW. When building
a state in which the UVW waits for (b∧ (cU d)) to hold and checks for a to hold
along the way, we cannot predict when the state should be left. If the character
{a, b, c} occurs, then the next character could be {a} (so that a UVW run has to
stay in the state), but the next character could also be {c} (and then we would
have just observed a good prefix for the LTL formula). We verified that indeed
no UVW for this LTL formula exists by using the tool ltl2dstar to translate it
to a single-pair deterministic Rabin automaton, and then applying the test from
[14] (implemented as part of the bassist reactive synthesis tool [7]).

The UVWs computed by the construction from the previous section can be
labeled by temporal logic formulas that they represent. For example, Figure 1
shows a UVW for the LTL property ψ = G((a → b)U c) ∧ GF(dU e) that we
computed with our approach. The states can be labeled by

– q0 ≡ ψ,
– q1 ≡ true,

– q2 ≡ (a→ b)U c,
– q3 ≡ F(dU e),

which explains how the individual states contribute to the encoding of the LTL
property. Our implementation of Algorithm 1 computes such a labelling auto-
matically by keeping track of for which subformula a sub-UVW was computed.
The later automaton minimization steps do not lead to a loss of this information,
and since in UVWs, two states that represent the same language can always be
merged, there is always only one state for each subformula, which makes them
easy to understand. This is not the case for (non-deterministic) Büchi automata.
Figure 3 shows an example nondeterministic Büchi automaton with two states

A Fragment of LTL for Universal Very Weak Automata 13

q0 q1
a

true
¬a

Fig. 3. A (minimally-sized) nondeterministic Büchi automaton for the language GFa.
All states represent the same language.

that represent the same language. In fact, all Büchi automata that encode the
same LTL formula have this property.

5 Case Studies and Experiments

5.1 LTL to UVW Translation

We implemented the translation from LTL to UVWs in Python. All experiments
reported in the following were conducted on a computer with an Intel Core i5-
7200U CPU and 16 GB of memory while using spin version 6.4.7 and spot [15]
version 2.4.1 under the Ubuntu 16.04 LTS operating system. From the formal
verification framework spot, we only use the ltl2tgba [15] tool for translat-
ing LTL properties to (non-deterministic) Büchi automata. In many cases the
automata computed by our construction and by spot (for the negation of the
respective specification) are very similar, but our construction always guarantees
that the output is a very weak automaton. For example, spot does not translate
the negation of the LTL property ψ = G(a∨Xb) to a very weak automaton, even
though there exists an equivalent UVW for ψ.

As a first experiment, we tested how many of the properties that Blahoudek
et al. [3] compiled for a study are accepted by the grammar that we define in
this paper. Out of the 134 unique properties, 77 can be translated to UVWs, as
we found out using the construction from [14]. Of these, 74 are accepted by our
grammar, and their translation to UVWs took 257 milliseconds of computation
time in total. Out of the remaining three properties, one is equivalent to true
and the other two differ only in the names of the atomic propositions.

5.2 Case Study

The General Inter-Orb Protocol (GIOP) is a key component in the Common
Object Request Broker Architecture (CORBA). Kamel and Leue [16] gave a
model and specifications for this protocol. One of the specifications that they
give for this model is quite convoluted, and we chose it as main benchmark, as
it can be translated to a non-trivial UVW. The property is as follows:

ψ = G(Fr → (G((s ∧ Fr)→ (r U p))
∧ G((s ∧ Fr)→ ((p ∧ r)U (r ∨ ((p ∧ r)U (r ∨ (pU r))))))))

It is neither a pure safety property, nor a pure liveness property. Proposition
s represents that a user sends a request, p represents that a server processes a

14 Keerthi Adabala and Rüdiger Ehlers

request, and r represents that a user receives a reply. Intuitively, the formula
states that if a user sends a request and eventually a reply message is received,
that particular request was served exactly once in case of successful processing
by the server or at most once in case of unsuccessful processing. So in any case,
the same request should not be served and processed twice by the server.

The original model by Kamel and Leue is too large to model check it against
the specification with spin and 16 GB of memory. To demonstrate how the
simple shape of UVWs helps with understanding counter-example traces, we
injected an error into the model, so that the model checker spin can compute a
counter-example trace within the memory limit.

We use spin’s exhaustive verification algorithm. The ltl2tgba tool of spot
translates the (negation of the) LTL specification above to a Büchi automaton
comprising of 6 states (which happens to be very weak). When trying to verify
the GIOP model with this automaton as specification, spin generates an error
trace of length 526 in 3.4 seconds using 893 Mbytes of memory. The error trace
is quite long and hence hard to inspect. While the trace involves only few state
changes in the specification automaton, due to the absence of a labelling of the
states with the LTL properties that they represent, interpreting the trace is
difficult.

The same experiment when executed with a UVW constructed with the
algorithm presented in this paper leads to an error trace of length 524 in 1.71
seconds using a total memory of 510 Mbytes. Figure 4 shows the full UVW
computed for the LTL property given above. It can be decomposed into 6 simple
chains, which are highlighted by different colors. The smallest chain comprises
of just two states, whereas the longest one has five states. When running spin

for all simple chains (and the model) separately, we first of all observe that spin
finds counter-example traces for all chains except for the chains along q0 → T
and q0 → q2 → T , for which the verification process ran out of memory (in 59.9
and 77 seconds, respectively). Out of remaining four, for two chains a trace of
length 526 was computed by spin in 3.69 and 4.0 seconds. For the other two,
traces of length 455 were computed in 5.24 and 2.16 seconds, respectively.

We analyze one of the traces of length 455, as they are shorter and hence
easier to understand. We show the values of the variables s, r, and p in the
characters of the counter-example trace in Figure 5 along with the UVW chain.
The UVW states are labeled by the following LTL formulas:

– q0 ≡ ψ
– q4 ≡ G¬r∨((p∧¬r)U(r∨(¬pU r)))

– q5 ≡ G¬r ∨ (¬pU r)
– q2 ≡ G¬r

Only those characters that lead to a state change in the UVW chain are
shown. Restricting our attention to these characters gives us a summary of the
error trace. The labelling shows that from state q4, the trace character spr leads
to the second disjunct of q4 to only be satisfiable if ¬pU r holds in the future.
The following two highlighted characters then successively lead to the violation
of every disjunct of the remaining obligation. We can also see that the s variable
has a true value in all cases, which implies that user requests are sent more

A Fragment of LTL for Universal Very Weak Automata 15

q0 Tq1

q2q3

q4 q5

truetrue
s ∧ p

r ∧ s r ∧ s ∧ p

r ∧ s ∧ p

r ∧ s ∧ p

p

r ∧ p

r ∧ p

true

r
r

r ∧ p

r

r ∧ p
r

r ∧ p

Fig. 4. UVW computed from our construction for the first case study. Each decomposed
chain is highlighted with different color coding.

t1 t2 t3

w = . . .

 s
p
r

 . . .

 s
p
r

 . . .

 s
p
r

 . . .

 s
p
r

 . . .

ω s
p
r



q0 q4 q5 q2 T

Fig. 5. Error trace analysis with a single chain of the UVW decomposition.

than once, or that the sending process does not leave the “just sent” state along
the trace. After a request is sent in character t1, it is processed twice in t2 and
t3, which is the cause for the violation – an absorbing rejecting state is reached
immediately afterwards. With this analysis of the cause of the error, we could
now further inspect the trace to find the parts of the execution leading towards
the double processing of the request.

6 Conclusion

We defined a context-free grammar for a subset of LTL and a translation from
specifications accepted by this grammar to universal very weak automata. The
key technical contribution was the definition of quitting points for LTL prop-
erties, which we exploited to give a grammar that covers the vast majority of
the properties that are translatable to UVWs from an LTL property database
compiled by Blahoudek et al. [3]. Furthermore, our grammar contains all pos-
sible nestings of the LTL Until operator. All states in the UVWs computed by
our construction are automatically labeled by LTL formulas that they represent,
and even when applying classical simulation-based state reduction techniques,
this information is not lost. We demonstrated using a short case study how

16 Keerthi Adabala and Rüdiger Ehlers

the favourable properties of UVWs can be used to simplify a model debugging
process. For space reasons, more thorough experiments are left for future work.

We believe that UVWs are also a useful automaton model for many other
applications in the domain of formal methods. For instance, the translation pre-
sented in this paper is useful for reactive synthesis, where very large specifications
need to be processed. Using UVWs to represent the specifications enables the
use of anti-chains [17] as data structure for solving synthesis games without the
introduction of counters that are normally used in bounded synthesis [18] for full
LTL, which has the potential to substantially improve synthesis times.

References

1. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, Proceedings. (1977)
46–57

2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
3. Blahoudek, F., Duret-Lutz, A., Kret́ınský, M., Strejcek, J.: Is there a best Büchi

automaton for explicit model checking? In: SPIN Symposium. (2014) 68–76
4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterex-

amples using causality. Formal Methods in System Design 40(1) (2012) 20–40
5. Basin, D., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on

lasso words. In: 16th International Symposium on Automated Technology for
Verification and Analysis (ATVA 2018). (2018)

6. Maidl, M.: The common fragment of CTL and LTL. In: FOCS 2000, Proceedings.
(2000) 643–652

7. Ehlers, R.: ACTL ∩ LTL synthesis. In: CAV 2012, Proceedings. (2012) 39–54
8. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual.

Addison-Wesley (2004)
9. Cichon, J., Czubak, A., Jasinski, A.: Minimal Büchi automata for certain classes of

LTL formulas. In: Fourth International Conference on Dependability of Computer
Systems, (DepCos-RELCOMEX). (2009) 17–24

10. Gurumurthy, S., Bloem, R., Somenzi, F.: Fair simulation minimization. In: Com-
puter Aided Verification, 14th International Conference, CAV. (2002) 610–624

11. Vardi, M.Y.: Nontraditional applications of automata theory. In: TACS, Proceed-
ings. (1994) 575–597

12. Gerth, R., Peled, D.A., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Protocol Specification, Testing and Verification
XV. (1995) 3–18

13. Ehlers, R.: Short witnesses and accepting lassos in ω-automata. In: LATA, Pro-
ceedings. (2010) 261–272

14. Bojańczyk, M.: The common fragment of ACTL and LTL. In: FOSSACS 2008,
Proceedings. (2008) 172–185

15. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. International Journal
on Critical Computer-Based Systems 5(1/2) (March 2014) 31–54

16. Kamel, M., Leue, S.: Validation of a remote object invocation and object migration
in CORBA GIOP using Promela/Spin. In: International SPIN Workshop. (1998)

17. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL
synthesis. Formal Methods in System Design 39(3) (2011) 261–296

18. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6) (2013) 519–539

	A Fragment of Linear Temporal Logic for Universal Very Weak Automata

