
Reactive Synthesis of Graphical User Interface
Glue Code?

Rüdiger Ehlers1 and Keerthi Adabala2

1 Clausthal University of Technology, Clausthal-Zellerfeld, Germany
ruediger.ehlers@tu-clausthal.de

2 University of Bremen, Bremen, Germany
adabala@uni-bremen.de

Abstract. We present an approach to synthesize glue code for graph-
ical user interfaces. Such code starts computation and I/O threads in
response to user interface events and changes the state of the interface
according to the interaction scheme envisioned by the UI designer.
Our approach integrates several ideas that work best in combination.
For instance, by translating all specification parts to universal very-weak
(UVW) automata and building a game from them, we obtain a natural
order over the positions in the game that enables us to prune the game
graph substantially while constructing it. Furthermore, we present an
approach to compute kind strategies that constrain the environment as
little as possible and hence make the UIs as responsive as possible. The
use of UVWs gives rise to a simple formalization of this idea.
We apply our approach to a case study with an Android (cell phone) ap-
plication and show experimentally that previous reactive synthesis tools
are unable to synthesize controllers for this application.

1 Introduction

The large number of ways in which a user of a program can interact with its
graphical user interface (GUI) makes writing code for such interfaces highly
difficult. Events in user interfaces trigger computation or I/O threads that can
run concurrently while the user interface needs to remain responsive and to
service requests that are unconnected to the computation or I/O taking place in
the background. Unsurprisingly, user interface glue code that reacts to events,
changes the state of the user interface, and triggers computation or I/O is difficult
and tedious to write and thus susceptible to bugs.

User interfaces often go through several iterations of user testing before they
are finalized. While programs for designing the graphical appearance of user
interfaces exist, how the system to be developed behaves in response to events is
still normally implemented manually, which leaves the implementation burden
for every iteration to the UI designer and the user experience (UX) engineer,
which makes experimenting with different interaction styles difficult.

? This work was supported by the German Science Foundation (DFG) under Grant
No. 322591867.

Automatically synthesizing GUI code from user interface interaction speci-
fications has the potential to solve this problem. It is a special case of reactive
synthesis, where a system that continuously interacts with its environment is
computed that satisfies its specification for all possible input sequences. The
specification is typically given in some form of temporal logic, such as linear
temporal logic (LTL). Despite the provably high computational complexity of
this problem for most specification logics, practical reactive synthesis has seen
a substantial improvement in the last few years, with tools such as Strix [15]
winning the 2018 Reactive Synthesis Competition for LTL specifications.

Unfortunately, classical reactive synthesis frameworks are not well-applicable
to synthesize GUI glue code:

1. In synthesis from LTL, the system is assumed to read input bit values and
set output bit values in every time step. There is no fixed time step in
user interfaces – rather, the controller can respond to events by executing a
sequence of actions. These cannot happen in parallel, and there can also be
a last event after which the system and the controller stall.

2. Specifications for user interfaces are normally huge, requiring a very high
scalability of the synthesis approach, which traditional approaches for syn-
thesis from LTL specifications do not provide.

3. Synthesis approaches that trade the full expressivity of LTL against improved
efficiency, such as Generalized Reactivity(1) Synthesis [7], cannot deal with
specifications parts that describe chains of events, which are common in user
interface specifications.

4. The application-specific quality metrics for user interface glue code, such as
starting computation as quickly as possible and enabling UI elements such as
buttons whenever possible (but only then) cannot be accurately captured by
traditional quality metrics in reactive synthesis, such as maximizing pay-offs
in games [4].

Nevertheless, GUI glue code is an application that is quite a natural fit for reac-
tive synthesis: there is a clear notion of state in user interfaces, the lower bound
on the complexity of all interesting problems for LTL induced by the inclusion
of propositional logic does not apply (as events cannot happen in parallel in
GUIs), and the rapid prototyping cycles during UI/UX design provide a clear
motivation for employing synthesis technology.

In this paper, we present an approach to perform reactive synthesis of user
interface glue code. We carefully selected and devised components for a synthesis
approach that in combination avoid the four drawbacks of classical synthesis
algorithms stated above and hence enable the synthesis of GUI glue code. Our
approach builds on the following ideas:

– Rather than assuming an execution in fixed timesteps, we use an interaction
semantics in which the GUI controller can react to every input event with
arbitrary long but finite sequences of output actions.

– We use an LTL fragment that can easily be translated to universal very weak
automata as specification language [1].

2

– We reuse the main ideas of the efficient Generalized Reactivity(1) Synthesis
approach to solve the synthesis games built from environment assumptions
and system guarantees in this LTL fragment.

– Contrary to how Generalized Reactivity(1) Synthesis was used with binary
decision diagrams (BDD) in earlier works, we perform explicit-state game
solving, where only those game positions are explored that form the anti-
chain of incomparable best-case reactions by the system.

– After solving the game, we constrain the strategy to play action sequences
that restrict the environment as little as possible, hence making the UIs as
responsive as possible.

These design decisions work together in concert. For instance, the use of universal
very-weak automata enables us to define a natural order over the obligations of
the system player on the further play of the game. This allows the system player
to chose its action sequences in a way that all successor positions are optimal with
respect to this order, which minimizes the explicit-state size of the game graph.
We show that in this way, the synthesis problem for GUI glue code becomes
much more tractable than with earlier synthesis approaches. At the same time,
the supported specification class is powerful enough to capture user interface
interaction rules.

We present the overall methodology in this paper and highlight the insights
that led to the choice of its components. We apply our methodology to a case
study for a cost splitting application for Google Android cell phones on which
we demonstrate the scalability of our synthesis approach.

1.1 Related work

Reactive synthesis is an classical topic in the formal methods literature. While
the identification of the problem as doubly exponential-time complete for logics
such as linear temporal logic (LTL) [16] implied that the problem is intractable
in theory, more recently, optimizations that try to make use of the structure of
specifications of interest in practice have emerged. Of particular interest in this
context is the Generalized Reactivity(1) Synthesis approach [7], which trades the
full expressivity of LTL against a reduction of the synthesis complexity. The ap-
proach, abbreviated as GR(1) synthesis, has been shown to be expressive enough
for many applications in robotics [13] and device driver synthesis [17]. Just like
it is the case for GR(1) synthesis, the approach we present in this paper lies
at a sweet spot between expressivity and efficiency for interesting application
domains.

We focus on the domain of user interfaces. Experience shows that getting
them correct is difficult [14], which suggests that more formal approaches to
developing user interface code may be useful. Model-driven engineering of user
interfaces helps to mitigate this problem [12] and builds on iterative refinement
of the model. With the present work, we aim for a less disruptive approach to
change the way GUI glue code is engineered. We only require the UI/UX design-
ers to specify the behavior in a form of temporal logic, without the need to model

3

any other representation of the interaction or perform any form of refinement,
hence allowing for very quick revision cycles of the interaction scheme.

While classical reactive synthesis uses environment and system propositions
to model the interaction of a system with its environment, GUIs communicate
with their environments via events, of which only one can happen at a time.
Synthesis of event-based systems has been considered previously [8], but incor-
porating the idea that the system can react with a sequence of actions to input
events, as it is the case in GUIs and exploited in our synthesis algorithm to
simplify the synthesis problem, appears to be novel.

When synthesizing an implementation, there is normally an infinite number
of candidate implementations to choose from. In such a case, implementations
that do not prevent the environment from fulfilling the assumptions made about
it in the specification are commonly preferred [8, 6]. Furthermore, if a specifica-
tion comes with a cost metric for performing actions, we may be interested in
cost-optimal controllers (see, e.g., [4]). In contrast, the kindness definition for
GUI glue code given in Section 6 is a domain-specific optimization objective that
builds on the representation of the specification using very-weak automata.

2 Running Example: SplitExpenses

We consider a cost splitting application for Android cell phones. With the appli-
cation, an (informal) team can split its running costs. Team members paying for
expenses can add their expenses to a list. The application then gives an overview
of who owes how much money to make the split fair. The application uses a server
to synchronize the data, and it supports being a member of multiple teams. The
application has several views of which one is visible at every point in time:

– Account/team selection
– New team/account
– Overview of who owes how much money
– List of expenses
– Administrator’s panel for removing unjustified expense items
– Adding an expense
– Recording reimbursements within the group
– Expenses not yet confirmed by the current user
– List of actions not yet executed due to a missing internet connection

A new group is started by an administrator, who forwards team login codes to
other team members. If a user does not have an internet connection, changes per-
formed by the user are not dropped, but rather executed when the connection is
restored. So offline use is possible with delayed synchronization. The application
has three threads for creating a new team, receiving team data from the server,
and submitting changes to the server.

The overall specification for the GUI glue code consists of 118 individual
properties (expressed in an LTL fragment that permits an efficient translation
to universal very-weak automata [1]). There are, in addition, 8 properties that
express assumptions about the environment, such as that all threads eventually
terminate and that disabled buttons cannot be clicked by the user.

4

3 Preliminaries

Basics: Given a finite set X, the set of finite words over X is denoted as X∗,
while the set of infinite words is denoted as Xω.

Linear temporal logic (LTL): Let AP be a finite set of atomic propositions. An
LTL formula describes a specification over infinite traces with trace elements in
2AP. Syntactically, LTL formulas are built using the following grammar:

ψ ::= p | ¬ψ | ψ ∨ ψ′ | ψ ∧ ψ′ | Xψ | Gψ | Fψ | ψ U ψ′ | ψRψ′ | ψW ψ′

An LTL formula holds at a position in a trace or not. By default, the first element
of the trace is looked at. A formal semantics of LTL can be found in [3].

Automata over infinite words: Let Σ be a finite alphabet. An ω-automaton
A = (Q,Σ,Q0, δ, F) over Σ is a tuple consisting of a set of states Q, the set
of initial states Q0, the transition relation δ ⊆ Q × Σ × Q, and the set of
final states F . An infinite word w = w0w1 . . . ∈ Σω induces an infinite run
π = π0π1 . . . ∈ Qω in A if we have π0 ∈ Q0 and for every i ∈ IN, we have
(πi, wi, πi+1) ∈ δ. Finite runs are defined similarly, where we require that they
cannot be further extended. Automata reject or accept words w depending on
which runs w induces. The set of words accepted by an automaton is called its
language. A universal co-Büchi automaton accepts all words for which no infinite
run exists that visits states in F infinitely often, i.e., for which there are infinitely
many i ∈ IN with πi ∈ F . We also call F the set of rejecting states in this paper.
We will only be concerned with a subclass of these automata here, which are
called universal very-weak (or one-weak) automata. These are universal co-Büchi
automata for which every loop is a self-loop. This requirement can be formalized
by stating that there should exist a leveling function l : Q → IN such that for
every (q, x, q′) ∈ δ, we have l(q′) ≥ l(q). For many (but not all) LTL formulas,
there exists a universal very-weak (UVW) automaton whose language is the set
of traces that satisfies the LTL formula. Pointers to the literature discussing this
topic are given in [1]. We say that a UVW state q is left along all runs for the
last character of a word w0 . . . wn if (q, wn, q) /∈ δ or there is no run that is in
state q after the prefix word w0 . . . wn−1.

4 An Execution Semantics for GUI Glue Code

Traditional temporal logics either use a real-time semantics in which the passing
of time can be reasoned about (such as in Metric Time Logic [2]), or assume a
discrete-time semantics with regular steps in the execution of a system (such as
LTL). For synthesizing GUI glue code, neither of these choices is satisfactory.
User interfaces should normally be patient and give the user time to react, so
that the concrete timing of the interaction with a user should not matter. Given
that even for simple real-time temporal logics such as Metric Interval Time
Logic, the reactive synthesis problem is undecidable [9], real-time logics appear

5

to be an unsuitable choice. Linear temporal logic (LTL) synthesis on the other
hand has been conceptualized for settings with evenly distributed time steps, for
which the abstraction that a system runs infinitely long is reasonable, and for
which in every step of the system’s execution, all input and output propositions
of a system have values. This is also not the case for GUIs, as all events such as
clicking a button and starting a computation thread are ordered, so that no two
events can happen at the same time. The assumption that the system always runs
infinitely long is also unreasonable: GUI code always eventually returns control to
the operating system (OS) and then only wakes up if and when an external event
happens. If a user is finished with a user interface, it may never wake up again
and hence good GUI glue code must perform actions such as saving settings to
flash memory eagerly to avoid not being able to satisfy its specification. Finally,
the strict temporal alternation between input and output that is common in
current reactive synthesis approaches is also not suitable, as a GUI controller
can perform arbitrary many actions before giving control back to the operating
system, which is a precondition for the next user interaction event (such as a
button press) to occur. None of these differences to previous synthesis approaches
prevent conflicts with the use of LTL as specification logic if we define a suitable
execution semantics for GUI glue code, however, as we show in this section.

We formalize the interaction between the GUI code and its environment by
defining a set of environment events ΣI that model events not under the control
of the GUI glue code to be synthesized and controller actions ΣO that the said
glue code can trigger. We assume that the controller can only react to events
from ΣI with arbitrarily long sequences of actions. Hence, a controller to be
synthesized has the form f : (ΣI)∗ → (ΣO)∗, where providing the history of past
input events to f yields the reaction to the last such event. To simplify specifying
the desired properties of GUI glue code, we define a designated initialization
event init ∈ ΣI that the controller can always assume to get first when the
application starts. Likewise, we define a designated “done” action done ∈ ΣO
that signals that a controller yields control back to the operating system and
that always has to be exactly the last action in every sequence returned by f .
Thus, the value of f(w) for some w ∈ (ΣI)∗ needs to be defined for words w
that start with init , and f(w) ends with done in this case.

Let wI = wI0w
I
1 . . . be a sequence of input events. We say that wI induces

a system trace w = wI0f(wI0)wI1f(wI0w
I
1)wI2f(wI0w

I
1w

I
2) We define that w

satisfies some LTL specification ψ if the word w′ that results from translating

each letter x in w to the letter {x} ∈ 2Σ
I∪ΣO

satisfies ψ. If wI is finite, the
word w eventually ends, and we append an infinite number of repetitions of ∅
(the empty set) to ψ before interpreting the LTL formula.

Example 1. To motivate these definitions, let us look at a fragment of the ex-
pense split application specification. Specifications to be fulfilled by GUI glue
code often contain assumptions made about the environment and the guarantees
that the controller must fulfill. Let us consider that the guarantees contain the
following specification part:

ψg = G(newTeamButton.click → (¬done U regTeam.start)

6

∧ (¬regTeam.terminate U (regTeam.terminate ∧ (¬done U updateTeamList))))

This guarantee states that whenever the GUI button for starting a new team
is clicked, then a thread for registering a new team is started before the con-
troller hands back control to the operating system. Registering a new team
requires communication with a server, and a GUI should not be blocked until
an answer from the server is received. This implies the need to offload the com-
munication task to a separate thread. Furthermore, the specification states that
when the thread eventually terminates afterwards, some instantaneous action
updateTeamList is to be executed before control is given back to the operating
system. Both this action and starting the thread lead to user-written back-end
code being executed. The updateTeamList action is fast enough so that executing
it in the context of the GUI does not lead to it blocking, and GUI frameworks
such as the one used for Android applications even require such updates to be
performed from the GUI (main) thread.

On its own, the specification is unrealizable, because the regTeam thread may
never terminate. This can be fixed by adding the assumption to the specification
that whenever the thread for registering a new team is started, it eventually
terminates:

ψa = G(threadA.start → FthreadA.terminates)

The specification used for synthesizing the glue code is then ψa → ψg.
Figure 1 shows two trace parts of traces satisfying the specification. In the

left example, the system correctly starts the team registration thread when
the corresponding button is clicked. Eventually, the thread terminates (with no
other GUI event happening in this example), and the controller chooses action
updateTeamList as response, as specified.

The right trace shows an example for a finite trace. After starting the thread
and giving back control to the OS by choosing action done, the GUI glue code
never gets control back. This means that the trace is filled with ∅ to interpret
the specification ψa → ψg. Since ψa is violated on this trace, this means that
the trace also fulfills the specification ψa → ψg. Note that this is important
as otherwise no controller would exist for this specification as the termination
of a manually written thread is outside of the control of the synthesized GUI
controller.

5 GR(1) Games for Event-based Specifications

Given an environment event set ΣI , a controller action set ΣO, an environment
assumption formula ψA in LTL, and a system guarantee LTL formula ψG, the
GUI controller synthesis problem is to check if there exists a controller function
f : (ΣI)∗ → (ΣO)∗ such that all traces induced by the controller (using the
semantics from the previous section) satisfy the specification ψA → ψG.

Controller synthesis is commonly conceptually reduced to solving a game
between an environment player and a system player. The environment player

7

buttonNewTeam.click

regTeam.start

done

regTeam.terminates

updateTeamList

done

Arbitrary
time

length

buttonNewTeam.click

regTeam.start

done

No
further
events

Fig. 1. Two trace parts of a controller satisfying the specification from Example 1.
Time progresses from the bottom to the top.

has the role of choosing the uncontrollable input, and the system player wins
the game if and only if it can always react in a way such that the play satisfies
the specification for which the game was built. A play is built from following the
edges of the game according to the events and actions that the two players choose.
A play is in some position at every point in time, and the positions encode the
obligations of the system player for the remainder of the play. Readers who want
to learn more about game-based synthesis are referred to [5] and for conciseness,
we assume familiarity with its basic ideas in the following.

5.1 Game definitions

For the approach in this paper, we build games from assumptions and guaran-
tees that are both representable as universal very-weak automata (UVWs). We
identified a fragment of LTL that can be efficiently translated into this form
in earlier work [1], so that we can assume that UVWs for the assumptions and
guarantees in a specification are given. The following game construction captures
the main ideas of Generalized Reactivity(1) synthesis [7], but is adapted to the
case of having UVW specifications:

Definition 1. Let AA = (QA, Σ,QA0 , δ
A, FA) be a UVW representing ψA and

AG = (QG, Σ,QG0 , δ
G, FG) be a UVW representing ψG. We define the syn-

thesis game induced by AA and AG as a tuple G = (V,ΣI , ΣO, E, v0) with

the finite set of positions V = 2Q
A × 2Q

G

, the input and output players’ ac-
tion sets ΣI and ΣO, the initial position v0 = (QA0 , Q

G
0) ∈ V , and the set of

edges E ⊆ Q × ΣI × ΣO × 2F
A × 2F

G × Q′, which consists of all elements
((vA, vG), xI , xO0 . . . x

O
n , L

A, LG, (v′A, v′G)) for which we have:

xOn = done

8

∧ ∃Q′0 . . . Q′n+2 ⊆ QA.
Q′0 = vA, Q′n+2 = v′A, Q′1 = {q′ ∈ QA | ∃q ∈ Q′0, (q, xI , q′) ∈ δA},
∀i ∈ {0, . . . , n}. Q′i+2 = {q′ ∈ QA | ∃q ∈ Q′i+1.(q, x

O
i , q

′) ∈ δA},
LA = {q ∈ FA | ∃i ∈ {0, . . . , n+ 2}.q /∈ Q′i ∨ (q, xI , q) /∈ δA}
∪ {q ∈ FA | ∃i ∈ {0, . . . , n}.(q, xOi , q) /∈ δA}

∧ ∃Q′0 . . . Q′n+2 ⊆ QG.
Q′0 = vG, Q′n+2 = v′G, Q′1 = {q′ ∈ QG | ∃q ∈ Q′0, (q, xI , q′) ∈ δG},
∀i ∈ {0, . . . , n}. Q′i+2 = {q′ ∈ QG | ∃q ∈ Q′i+1.(q, x

O
i , q

′) ∈ δG}
LG = {q ∈ FG | ∃i ∈ {0, . . . , n+ 2}.q /∈ Q′i ∨ (q, xI , q) /∈ δG}
∪ {q ∈ FG | ∃i ∈ {0, . . . , n}.(q, xOi , q) /∈ δG}

The edge set definition requires some explanation. An edge ((vA, vG), xI , xO0 . . .
xOn , L

A, LG, (v′A, v′G)) denotes that if from position (vA, vG), the environment
player chooses input action xI and the system player chooses action sequence
xO0 . . . x

O
n , then the next position in a play is (v′A, v′G). The additional com-

ponents LA and LG denote the rejecting UVW automaton states that are left
along such an edge.

The definition of a synthesis game is carefully crafted for the case that the
specification from which the game is built comes in the form of assumption and
guarantee UVWs, and hence deviates from the definitions found in other works.
We chose to keep the strict alternation between the environment and system
players’ choices, which required that the system player chooses sequences of
actions from ΣO rather than single actions. Keeping the strict alternation greatly
simplifies the presentation of the optimizations for game solving defined later in
this paper. For the same reason, we also encoded the usual winning condition
in GR(1) synthesis into the edges rather than separately (which is explained
below). Finally, we do not have explicitly owned vertices for the two players.
This is only a minor difference in case of strict alternation between the players
and ensures that the controller definition from the previous section fits exactly
the strategy definition for games given below.

More formally, we say that a sequence π = π0π1 . . . ∈ V ω is a play in the
game if there exist corresponding decision sequences ρenv = ρenv0 ρenv1 . . . ∈ (ΣI)ω

and ρsys = ρsys0 ρsys1 . . . ∈ ((ΣO)∗)ω for the two players such that π0 = v0 and
for every i ∈ IN, there is some suitable edge (πi, ρ

env
i , ρsysi , LAi , L

G
i , πi+1) in the

edge set of the game. We say that the play is winning if either:

– there exists some state q ∈ FA that appears in only finitely many sets LAi
(for i ∈ IN), or

– for all states q ∈ FG, there exist infinitely many sets LGi (for i ∈ IN) with
q ∈ LGi .

Note that the edges are defined in a way such that the positions (vA, vG) track
in which states runs of the automata AA and AG can be after reading a prefix

9

of the interleaved decision sequence ρ̃ = ρenv0 ρsys0 ρenv1 ρsys1 Furthermore, the
sets LAi and LGi keep track of which rejecting states every run needs to leave (if
it is in that state) when reading a part of ρ̃. If and only if some rejecting state
occurs only finitely often in {LAi }i∈IN, this means that some run of AA gets
stuck in a rejecting state when reading ρ̃. Likewise, if and only if some rejecting
state occurs only finitely often in {LGi }i∈IN, this means that some run of AG
gets stuck in a rejecting state when reading ρ̃. Hence, the winning condition of
the game implements the requirement that if the interleaved decision sequence
satisfies ψA, then it also needs to satisfy ψG for the system player to win the
game. This observation enables us to frame the problem of finding a controller
function f for a user interface as defined in the previous section as the problem
of finding a winning strategy f for the system player in G.

If there is a winning strategy in such a game, then there is also a finite-
state one. This follows from the fact that the winning condition type is the
same as in GR(1) game structures [7], so that the result that a strategy that is
positional per goal suffices for GR(1) games carries over to our game definition.
In our case, this means that the next choice of the strategy only depends on (1)
the current position in the game, (2) the last input chosen by the environment
player, and (3) the current goal of the system, which in our case is the state
in FG that is to be left next. By letting the controller cycle though all such
goals, concatenating the sub-strategies for each goal leads to a correct finite-
state controller implementation.

How to solve such games is described in [7]. We use a variation of the al-
gorithm presented in [10] as it permits the definition of goal transitions rather
than goal states. This is important to be able to define leaving a rejecting state
of the guarantee automaton as a goal.

5.2 Pruning the Game

The game specified in Def. 1 has an infinite number of edges since the system
player can choose sequences of actions rather than individual actions. Not all
such decision sequences make sense, however. We want to prune the game before
actually solving it, i.e., determining whether the system player has a winning
strategy and computing such a strategy.

We prune the game based on the following observation:

Lemma 1. Let f be a winning strategy for some game G built according to
Def. 1 and let ρenv0 . . . ρenvm−1 be some finite sequence of actions chosen by the
environment.

(1) By Def. 1, there is exactly one edge ((vA, vG), xI , xO0 . . . x
O
n , L

A, LG, (v′A,
v′G)) with xI = ρenvm−1 and xOn = f(ρenv0 . . . ρenvm−1) that can be taken at the nth
step of the play.

(2) If there is another edge ((vA, vG), xI , x̂O0 . . . x̂
O
m, L̂

A, L̂G, (v̂′A, v̂′G)) such
that L̂A ⊆ LA, L̂G ⊇ LG, v̂′A ⊇ v′A, and v̂′G ⊆ v′G, then the strategy that results
from modifying f to return x̂O0 . . . x̂

O
m instead of xO0 . . . x

O
m for ρenv0 . . . ρenvm−1 is

still winning.

10

q0 q1 q2

∗

buttonA.enable

¬buttonA.disable

threadA.start

∗

Fig. 2. Example guarantee UVW part for the example from Section 5.2.

Proof. The first claim follows directly from the definition of the game. The sec-
ond claim follows from the fact that whether a strategy is winning depends on
the labels of the positions visited along a play - if a state set vG is replaced by
a subset of vG, then a suffix strategy is still winning as the states along the vG

components of the positions along of the play will then also be subsets, and hence
the system player is less restricted in the possible moves (without being unable
to satisfy the winning condition). The same holds for vA, but in the reverse di-
rection, as a superset of states in a vA component means that the environment
is more restricted without violating its assumptions. Similar arguments can be
made about the LA and LG components. ut

The incorporation of the LA and LG components into the argument ensures that
the claim also holds if infinitely many strategy choices are replaced. This enables
us to prune the game during its construction: we only need to enumerate edges
that are not dominated by other edges. We say that an edge is dominated by
another edge if the criterion from the preceding lemma can be applied to make a
winning strategy never take that edge. Since there are only finitely many different
sets vA, vG, LA, and LG, this makes the game graph finite. This idea can be
made mathematically precise by defining a partial order over the positions and to
then only explore the anti-chain of best-case states (for the system). Anti-chains
over game positions have also been used in earlier works on reactive synthesis
from full linear temporal logic [11].

We observed that anti-chains based game pruning greatly reduces the sizes of
the games built from GUI specifications. As a trivial example, consider the case
that ψG has a conjunct that requires the system to not start a certain thread
while a certain button is enabled. Figure 2 shows a part of the corresponding
UVW. If there is no reason to enable a button (meaning that enabling it does
not change any other state in FG or FA to be left or a state in vA or vG to be
reached) from some position (vA, vG), then the pruned game graph will simply
not contain an edge from (vA, vG) along which the button is enabled, as this
would cause state q1 to become part of the vG component, which is avoidable
and hence is a dominated move.

5.3 Short decision sequences

Specifications for graphical user interfaces reason about events triggered by the
user and the change of the interface’s state. There are many combinations of
actions that do not usually make sense, such as the controller disabling and
enabling a button in the same step. When building a game according to Def. 1

11

and the anti-chains based pruning approach described above, we typically do not
want the game edges to include such sequences.

We can avoid them by performing a breadth-first search of the feasible con-
troller response sequences while enumerating all edges from a position in a game.
If there are multiple ways to get to the same combination of successor position
and leaving state label (LA, LG), the resulting edge will have one of the possible
shortest such sequences.

For instance, this approach prevents the action sequence buttonA.disable;
buttonA.enable from being a edge label from a position (vA, {q0, q1}) in a game
built using the UVW part from Fig. 2 as the only guarantee automaton. Since the
successor guarantee automaton state set (for some arbitrary input event) is the
same set for both the sequences buttonA.disable; buttonA.enable and buttonA.
enable with the same set of rejecting states left along the game edge, only the
shorter sequence has a chance to be found in the resulting game (assuming that
none of the actions affected the assumption automaton).

6 Kind strategies

Good GUI controllers are responsive by enabling GUI elements whenever they
can be enabled. While the UI designer could be required to specify exactly in
which situations a GUI element should be enabled, this defeats the purpose of
synthesis to enable designers to quickly prototype systems. It thus makes sense
to integrate this requirement into the synthesis process itself.

The anti-chains based pruning approach from the previous section makes
unresponsive controllers particularly likely to be found. For instance, if there is
a button that can be disabled or enabled, and there is an assumption that states
that the button cannot be clicked if it is not enabled, then there is an incentive
for the system to disable the button, as in this case, the resulting successor
position in the game is labelled by the additional assumption automaton state
that checks this condition. This happens even if the button does not need to be
disabled.

We solve this problem by defining a notion of a kind strategy that makes use
of the fact that assumptions are encoded in UVW form and hence the situation-
dependent obligations of the environment can be compared. A kind strategy
make kind choices, which we define as follows:

Definition 2. Let (vA, vG) be a position in a game G, xI ∈ ΣI be an environ-
ment action, and xO,1 and xO,2 be two output sequences from (ΣO)∗. We say that
xO,1 is kinder than xO,2 if for the corresponding successor positions (vA,1, vG,1)
and (vA,2, vG,2) reached by an edge for (xI , xO,1) and (xI , xO,2), respectively, we
have that vA,1 ⊆ vA,2.

Note that the kindest strategy choices are typically not part of a game pruned
according to the definition from the previous section, as successor states with
smaller assumption automaton sets vA are filtered out by the algorithm. Yet,
the definition captures that the controller should perform actions that restrict

12

the environment as little as possible, as witnessed by the assumption automaton
being in fewer states.

To marry these two concepts, we developed an iterative approach that com-
bines anti-chain based game pruning with the search for kind moves in a syn-
thesized strategy. Whenever a winning strategy is found, we iterate over the
reachable positions in the game and for every input event replace the edges for
the input event by edges that are strictly kinder than the one selected in the pre-
vious strategy (or by multiple ones if different ones are selected for different next
goals of the system). Among the strictly kinder ones, we still perform pruning
as described in Section 5.2 to keep the game small. Whenever the game becomes
losing for the system after this change, our algorithm undoes the change. Oth-
erwise, the changed game is kept. When the process completes for all positions
reachable by the last strategy computed, this last strategy is the final kindest
strategy found.

Note that this process can increase the number of positions in the game. It
also requires many game solving iterations. We picked it because of its simplicity
– if there is a strategy that is as kind as possible in every step and still satisfies
the specification, the approach finds such a strategy. If kindness in every step
conflicts with the system making progress towards leaving rejecting states, the
system player does not win any more when trying to remove the last unkind edge
useful for satisfying the specification. In this case, the edge removal is undone.
The approach naturally avoids the problem that optimal strategies could become
infinite-state, as it is the case when integrating quantitative objectives such as
mean-payoff into a game in which the players have obligations to fulfil infinitely
often [4, p. 150].

7 Case Study

We modelled the scenario from Section 2 using specification parts in the fragment
of LTL that is easy to translate to UVWs [1]. All in all, our specification consists
of 8 assumption LTL formulas and 118 guarantee LTL formulas.

When writing the specification, we made active use of the fact that we as-
sume that the computed implementations use the shortest decision sequences as
defined in Section 5.3 and that the strategy is kind as defined in Section 6. For
instance, the guarantee parts

G(MenuItemOfflineActions → ¬done U PanelExpensesToApprove.hide)

G(MenuItemOfflineActions → ¬done U PanelOfflineActions.show)

enforce that when the offline actions menu item is selected from the main menu of
the application, the view (panel) for the expenses to approve are hidden, and the
offline actions view should be shown. There is no specification part that prevents
the controller from hiding the latter view again immediately afterwards. But it is
also not necessary, as that would lead to unnecessarily long decision sequences,
and hence cannot be part of the strategy. Similarly, the specification does not

13

have guarantees that require the system to enable buttons in certain situations
- whenever there is an assumption that a disabled button cannot be clicked, a
kind strategy enables it whenever possible.

To validate our approach, we implemented the ideas presented in this paper
in an explicit-state game solving tool written in C++ and developed a prototype
tool that analyzes a GUI layout of an Android application to enumerate the
possible events, to build a game from the specification together with the event
list, and to translate a computed strategy to synthesized GUI glue code in the
programming language Java that can be compiled into the Android application.
Both tools can be found at https://github.com/tuc-es/guisynth together
with the expense splitting application.

To test the effectiveness of the approach presented in this paper, we also
implemented translator scripts that encode the synthesis problem into general-
ized reactivity(1) specifications and into the standard LTL format used for the
SyntComp competition. In both cases, we binary-encoded the events and ac-
tions to reduce the number of atomic propositions. The resulting specifications
are quite complex as for comparability, the execution semantics from Section 4
also needed to be encoded. For the translation to GR(1), doing so would lead
to specifications outside of the supported fragment; to mitigate this issue, we
restricted all controller decision sequences to be of length at most 16, which is
the longest sequences that we found our game solver to produce for the case
study.

We use the resulting specifications for the GR(1) and full LTL synthesis
tools Slugs and [10] Strix [15], where the latter won the full LTL synthesis
competition SyntComp in 2018. For fairness, we must note that neither Strix
nor Slugs are especially designed for the shape of GUI specifications, while
our approach was especially crafted for the execution semantics described in
Section 4.

Table 1 shows computation times and strategy sizes for kind and unkind
strategies for several versions of our specification which represent its evolution
during the writing process of the case study. Computation times for Slugs and
Strix on the translated specifications are given as well, where it needs to be
noted that these tools do not compute kind strategies.

It can be observed that the computed strategies are quite small. Since in our
strategy definition, the system can output multiple actions at the same step, we
also give the sizes of flattened finite-state machines from the strategies in which
this is not the case. It can be observed that such a representation increases the
number of states substantially.

8 Conclusion

In this paper, we presented a framework for the synthesis of graphical user
interface glue code. Synthesizing such code allows rapid iteration cycles, and we
did a first step towards even more scalable synthesis algorithms that are useful
for establishing GUI glue code synthesis in industry. Our solution was carefully

14

Specification Translation Game solving Game solving Slugs Strix
to UVWs (not kind) (kind)

Rev. # Pro- Time # Time Size Size st. Time Size Size st. Time Time
perties states strat. flat strat. flat

1 8 0.04 10 0.00 2 16 0.00 2 16 0.16 3.30
2 21 0.43 20 0.00 4 88 0.00 6 108 675.52 8.64
3 57 2.05 32 0.25 4 246 2.28 14 565 t/o t/o
4 105 5.77 41 18.44 6 537 45.45 15 1044 t/o t/o
5 124 10.41 44 182.87 6 630 389.14 15 1245 t/o t/o
6 115 7.21 44 102.84 6 618 215.32 15 1215 t/o t/o
7 135 12.0 47 589.04 6 711 1020.28 15 1413 t/o t/o
8 134 10.76 46 186.28 6 675 283.00 15 1413 t/o t/o
9 131 12.37 45 106.03 6 660 198.62 15 1392 t/o t/o
10 127 11.35 45 60.39 6 660 267.90 48 3676 t/o t/o
11 127 10.6 47 60.31 8 876 268.68 64 5129 t/o t/o
12 126 13.49 50 483.67 48 3756 916.39 138 10074 t/o t/o

Table 1. Results for the expense splitting example application. Time-outs (after two
hours) are listed as “t/o”, all other times are given in seconds (on an Intel i5 Processor
with 1,6 GHz clock rate and 6 GB RAM available).

designed to make use of the particular properties of the application domain –
thanks to the special execution semantics of GUI glue code, the system can
perform multiple actions in a row, which keeps the game graph small when
building the game only with best-case responses by the system. This enables
explicit-state game solving and helps with the definition of kind strategies that
represent responsive GUI controllers.

This work is only the first step, though. Our case study shows that the ap-
proach is already applicable, but will reach its scalability limit for more complex
specifications. There are many opportunities for improvement, though. We did
not perform incremental building of the game yet, as it was not necessary - the
solving time is dominated by the time needed to find the edges in the game
graph. Enumerating the anti-chain of best case responses requires to consider
many action sequences by the system player – we believe that there is potential
to optimize the search for best-case responses substantially.

In our framework, we separated control and data considerations completely
to obtain a decidable synthesis problem. We also assumed that there can be
at most one copy of a type of a thread at the same time. The reason is that
employing finite-state games does not enable encoding the number of threads
of a type running. Extending synthesis by this capability can easily lead to
undecidability, and in many applications, it is easy to write threads to collect
work and perform it sequentially, which removes the need to have more than one
thread of a type running at the same time.

Performing more case studies to collect specifications to drive the scalability
of synthesis from UI specifications forward is subject of future work. Further-
more, UI and user experience (UX) designers may benefit from more application-
oriented specification languages for UI code rather than LTL. We will explore
how such specification languages can look like while still permitting an efficient
translation to UVWs.

15

References

1. Adabala, K., Ehlers, R.: A fragment of linear temporal logic for universal very
weak automata. In: ATVA. LNCS, vol. 11138, pp. 335–351. Springer (2018)

2. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: REX.
LNCS, vol. 600, pp. 74–106. Springer (1991)

3. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-

thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV.
LNCS, vol. 5643, pp. 140–156. Springer (2009)

5. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In:
et al., E.M.C. (ed.) Handbook of Model Checking, pp. 921–962. Springer (2018)

6. Bloem, R., Ehlers, R., Könighofer, R.: Cooperative reactive synthesis. In:
Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA. LNCS, vol. 9364, pp. 394–410.
Springer (2015)

7. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

8. D’Ippolito, N., Braberman, V.A., Piterman, N., Uchitel, S.: Synthesizing
nonanomalous event-based controllers for liveness goals. ACM Trans. Softw. Eng.
Methodol. 22(1), 9:1–9:36 (2013)

9. Doyen, L., Geeraerts, G., Raskin, J., Reichert, J.: Realizability of real-time logics.
In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS. LNCS, vol. 5813, pp. 133–
148. Springer (2009)

10. Ehlers, R., Raman, V.: Slugs: Extensible GR(1) synthesis. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV. LNCS, vol. 9780, pp. 333–339. Springer (2016)

11. Filiot, E., Jin, N., Raskin, J.: Exploiting structure in LTL synthesis. STTT 15(5-6),
541–561 (2013)

12. Hussmann, H., Meixner, G., Zuehlke, D. (eds.): Model-Driven Development of
Advanced User Interfaces, Studies in Computational Intelligence, vol. 340. Springer
(2011)

13. Kress-Gazit, H., Lahijanian, M., Raman, V.: Synthesis for robots: Guarantees and
feedback for robot behavior. Annual Review of Control, Robotics, and Autonomous
Systems 1, 211–236 (2018)

14. Masci, P., Zhang, Y., Jones, P.L., Curzon, P., Thimbleby, H.W.: Formal verification
of medical device user interfaces using PVS. In: Gnesi, S., Rensink, A. (eds.) FASE.
LNCS, vol. 8411, pp. 200–214. Springer (2014)

15. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV. LNCS, vol. 10981, pp. 578–
586. Springer (2018)

16. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D. (eds.) ICALP. LNCS, vol. 372,
pp. 652–671. Springer (1989)

17. Ryzhyk, L., Walker, A., Keys, J., Legg, A., Raghunath, A., Stumm, M., Vij, M.:
User-guided device driver synthesis. In: OSDI. pp. 661–676 (2014)

16

