
Synthia: Verification and Synthesis for
Timed Automata?

Hans-Jörg Peter1, Rüdiger Ehlers1, and Robert Mattmüller2

1 Reactive Systems Group
Saarland University, Germany

2 Foundations of Artificial Intelligence Group
Freiburg University, Germany

Abstract. We present Synthia, a new tool for the verification and syn-
thesis of open real-time systems modeled as timed automata. The key
novelty of Synthia is the underlying abstraction refinement approach [5]
that combines the efficient symbolic treatment of timing information by
difference bound matrices (DBMs) with the usage of binary decision di-
agrams (BDDs) for the discrete parts of the system description. Our
experiments show that the analysis of both closed and open systems
greatly benefits from identifying large relevant and irrelevant system
parts on coarse abstractions early in the solution process. Synthia is
licensed under the GNU GPL and available from our website.

1 Introduction

A crucial factor for the acceptance of automatic system analysis techniques is
how well they scale when the models become more complex. A powerful concept
aiming at increasing the scalability is automatic abstraction refinement, where,
beginning with a coarse abstraction of the original system, only those parts are
incrementally refined that are necessary for proving a certain property.

In this paper, we report on Synthia, a new tool that makes abstraction
refinement available for the analysis of open real-time systems modeled in a syn-
tactically enhanced variant of the popular timed automata formalism by Alur
and Dill [1]. An open system distinguishes between external and internal non-
determinism, of which one type represents an unpredictable environment and the
other type represents a partial implementation. Synthia checks if the system is
realizable (i.e., whether there exists a full implementation) such that, indepen-
dent of the environment, some safety requirements are satisfied. Synthia can
also certify the (un)realizability by generating a controller that represents safe
(violating) implementations (environments). The verification of closed systems,
where the implementation is deterministic and complete, is a special case and
can equally well be handled by Synthia.

? This work was supported by the German Research Foundation (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS).



2 Underlying Approach

Computational model. We interpret a given open real-time system as a
two-player game played on a timed automaton, in which player Adam controls
the choices of the partial implementation and player Eve controls the nondeter-
minism of the unpredictable environment. A specified safety property defines the
dual winning conditions for the players: while Eve wins whenever the property
is eventually violated, Adam wins when the property is always satisfied.

As fundamental computation model, we consider timed game automata [6],
an alternating extension of timed automata [1], where the controllability of each
transition is assigned to a particular player. We always assume our timed game
automata to be strongly nonzeno. Synthia also supports additional syntactic
features such as parallel composition or arithmetic expressions over bounded
integer variables. In the following, we use the term location to refer to any pure
discrete state information, including integer variable valuations. We consider
an asymmetric semantics, where Eve is prioritized in situations in which both
players can play an active move, which leads to determinacy of all games.

Synthesizing a safety controller corresponds to computing a winning strategy
for Adam. For obtaining such a strategy, we compute the set of states from which
the players can enforce their respective winning objectives. For Eve, this is done
by taking the so-called attractor of the set of bad (i.e., requirement-violating)
states. Any strategy that enforces staying in the complement of this set is then
winning for Adam. In case of a closed system, there are only Eve moves, in which
case game solving naturally boils down to checking reachability.

Abstraction refinement. Synthia’s main analysis algorithm is an efficient
implementation of the approach introduced in [5]. We collapse sets of concrete
locations of the original timed game automaton into single abstract locations. In
these so-obtained syntactic abstractions, we distinguish between may and must
transitions: between two abstract locations n and n′, for a player p,
– there is a may transition for p, if there is some concrete location subsumed

by n having a p-transition to some concrete location subsumed by n′;
– there is a must transition for p, if all concrete locations subsumed by n have

a p-transition to some concrete location subsumed by n′.
We obtain an abstract game by letting Eve play on her must transitions and
Adam play on his may transitions. Clearly, in our abstractions Eve is weakened
and Adam is strengthened, compared to the original game. Thus, computing the
attractor of the bad states in the abstract game yields an under-approximation
of the attractor in the original game.

The abstraction refinement procedure begins with the trivial abstraction that
comprises (at most) four abstract locations: (1) one subsuming all initial loca-
tions; (2) one subsuming all bad locations; (3) one subsuming all safe locations
(from which no bad location is reachable); (4) one subsuming all other locations
which are not in (1)-(3). Then, in each iteration of the following refinement loop,
we compute the attractor of the bad states in the respective current abstraction;3

3 In fact, Synthia incrementally updates an attractor under-approximation.

2



`0 `1
u2, y > 15

i = 100

u1, x > 1

x := 0, i := i + 1

c, y > 2
i = 50
i := 0

(a) Original game

`0 ∧ i = 0 `0 ∧ 1 ≤ i ≤ 50
`0 ∧ i ≥ 51 ∨
`1 ∧ i = 100

u1, x > 1

x := 0

u1, x > 1, x := 0
c, y > 2

u1, x > 1

x := 0

u2, y > 15

n0

n1

n?

(b) Initial abstraction

`0 ∧ i = 0

`0 ∧ i = 50

`0 ∧ 1 ≤ i ≤ 49

`0 ∧ i ≥ 51 ∨
`1 ∧ i = 100

u1, x > 1, x := 0

c, y > 2

u1

x > 1
x := 0

u1, x > 1 x := 0

u1, x > 1, x := 0

u2

y > 15

n0

n′′
1

n′
1

n?

(c) Final abstraction

Fig. 1. Example timed game and its abstractions with transitions surely avail-
able (solid lines) and potentially available (dashed lines).

if it contains a concrete initial state, we can stop the iteration as we can surely
deduce a concrete winning strategy for Eve. On the other hand, if the abstract
game is safe, we refine the abstraction such that the attractor is extended in the
refined game. If no such refinement is found, we can deduce that Eve loses and
Adam wins.

Optimizations. The symbolic treatment of the locations allows us to apply
computationally cheap but effective optimizations based on pure discrete ana-
lyses of the control structure of the original game. For instance, in the initial
abstraction, Synthia only considers those locations which are both forward
reachable from the initial locations and backward reachable from the bad loca-
tions. Also, before constructing the initial abstraction, Synthia enlarges the set
of bad locations by those locations from which Eve can force the system into a
bad location. Furthermore, the selection of possible refinements can be restricted
to (an over-approximation of) the forward reachable states.

Example. Consider the timed game depicted in Fig. 1(a) comprising the clocks
x and y, as well as the integer variable i ranging from 0 to 100. Adam controls
the transition c and Eve controls the transitions u1 and u2. Eve wins when `1 is
eventually visited. It is easy to see that Adam has a winning strategy by playing
c whenever it is available (i.e., when i = 50). The initial abstraction (Fig. 1(b))
is based on all locations that are reachable in a purely discrete manner. Here, we
note that the abstract bad location n? subsumes the concrete location `1∧i = 100
as well as `0∧i ≥ 51, which is the result of the bad-location enlargement. As this
abstract game is safe, the refinement heuristic determines to split n1 such that
u1 becomes available for Eve, which leads to an enlargement of the attractor.
The resulting game (Fig. 1(c)) is still safe as the attractor can only be updated
for n′′

1 to y − 1 ≤ x ∨ 1 < x. Now, any further refinement would not enlarge the

3



attractor (e.g., making the u1-transition between n′
1 and n′′

1 available to Eve is
useless since then, n′′

1 is only entered when x = 0 and y > 2, in which case only
c is available but not u1).

3 The Tool Synthia

Availability and usage. Synthia is licensed under the GNU General Public
License and available at

http://react.cs.uni-saarland.de/tools/synthia.

Due to the lack of space, it is impossible to explain all of Synthia’s features in
this paper. Instead, in this section we present some standard usage scenarios. A
detailed description of the command line parameters, the file format, as well as
a step-by-step tutorial can be found on the tool’s website.

A specification is given in form of an XML file and essentially comprises a
plant model with requirements. Assuming that robot.xml represents a specifi-
cation, then the simplest way to execute Synthia is the following:

$ synthia robot.xml

This lets Synthia check whether there exists a controller influencing the plant
such that regardless of the uncontrollable behavior, the requirements are always
satisfied. Specifications can have parameters with default values which can be
overridden using the command line argument -D:

-Dprocesses:2 -Ddelay:23 -Dtimeout:42

Requirements are given as conjunctions of assumptions and guarantees. A system
does not satisfy its requirements if (1) there is a trace that eventually violates
the guarantees, and (2) each prefix of that trace satisfies the assumptions. For
example, the following lines of an XML specification file encode a requirement
describing a location invariant and a bounded reachability guarantee:

<assume>in(loc) imply (x <= {delay})</assume>

<guarantee>(not in(goal)) imply (y <= {timeout})</guarantee>

To let Synthia synthesize a controller in addition to checking realizability, the
following command line parameters can be used:

$ synthia robot.xml --synth-cont controller.xml

$ synthia robot.xml --synth-cont-plant controlled_plant.xml

The former call generates a model (in the Synthia file format) that only com-
prises the controller, while the latter generates a model where the synthesized
controller is embedded into the original plant.

Implementation details. Synthia is written in C++ and uses, besides some
standard Boost libraries, the CUDD BDD library [7] for representing transi-
tion relations and sets of locations, as well as the Uppaal DBM library [4] for
representing and manipulating clock zones.

4

http://react.cs.uni-saarland.de/tools/synthia


After parsing the specification, as explained in [5], Synthia constructs a
BDD-based representation of the control structure and sets up the initial ab-
straction. As an extension to [5], Synthia also considers abstractions of the
guards of abstract transitions. Hence, a refinement either consists of splitting an
abstract location or of making a guard of an abstract transition precise.

The actual game solving procedure that runs on the abstract games and
updates the attractor under-approximation is implemented as a pure backward
solving algorithm. The selection of refinements is carried out in form of a forward
zone-based reachability analysis: only those abstract locations and transitions are
considered which appear in this analysis.

As a further optimization, additionally to under-approximating the attractor
of the requirement-violating states, Synthia also computes an under-approxi-
mation of the attractor of the safe states. This is done by a concurrent game
solving procedure, in which Adam is weakened and Eve is strengthened.

4 Experimental Results

Table 1 shows a comparison of Synthia 1.2.0 with the game solver Uppaal-
Tiga 0.16 [2]. We note that the latter subsumes the basic model checking engine
of Uppaal 4.1.4 [3], which is automatically applied in case of closed-system
properties.

From left to right, the columns show the benchmark instance, whether it is
a safe/realizable instance, the number of refinement steps, the number of ab-
stract locations in the final abstraction, Synthia’s running time and memory
consumption, the parameters for which Uppaal-Tiga showed the best results,
Uppaal-Tiga’s number of explored states, running time and memory consump-
tion. Running times are given in seconds, memory consumption in MB, the time
limit was set to 4 hours, and the memory limit was set to 4 GB. All experiments
were conducted on a 2.6 GHz AMD Opteron computer running Ubuntu 10.04.
The model files used for the benchmarks can be downloaded along with the tool.

Fischer and CSMA/CD are standard benchmarks from the closed-system
verification domain. The instances are parametrized in the number of compo-
nents. The benchmark Robot is to decide whether a robot has a strategy to
quickly traverse a square-shaped grid with a wall in the middle that has two
gates through which the robot can pass. Up to a certain amount of time, non-
deterministically, one of the gates can close upon which the robot has to react.
The instances are parametrized in the edge length of the grid. The benchmark
Tank asks for the existence of a controller that controls the inflow to a water
tank such that a desired fill level is reached within a given amount of time. It is
parametrized by the precision in which the continuous flow is digitized.

Except for unsafe Fischer, where a depth-first-search on the precise system
quickly detects the error, Synthia’s abstraction refinement approach always
clearly outperforms Uppaal-Tiga. Interestingly, while Uppaal-Tiga suffers
from an exponential blow-up for increasing instance sizes, the final abstractions
found by Synthia are several orders of magnitude smaller than the original

5



Table 1. Performance comparison of Synthia with Uppaal-Tiga.

Safe / Synthia Uppaal-Tiga
Benchmark Realizable Steps Abs Time Mem Params States Time Mem

Fischer 60 No 116 119 2957 1321 -o1 520 5 39
Fischer 65 No 126 129 2247 935 -o1 6 1 26
Fischer 70 No TIMEOUT -o1 256 4 41
Fischer 13 Yes 169 172 4 86 -C -S2 29122758 1324 1127
Fischer 14 Yes 196 199 5 88 -C -S2 93835680 4661 3501
Fischer 15 Yes 225 228 6 90 MEMOUT
Fischer 30 Yes 900 903 355 228 MEMOUT
Fischer 40 Yes 1600 1603 2628 453 MEMOUT
Fischer 51 Yes 2601 2604 14262 1405 MEMOUT
Fischer 52 Yes TIMEOUT MEMOUT
CSMA/CD 15 Yes 4 5 6 118 -C 11681796 442 2639
CSMA/CD 16 Yes 4 5 8 158 -S2 27901956 1302 3072
CSMA/CD 17 Yes 4 5 16 252 MEMOUT
CSMA/CD 21 Yes 4 5 1474 3804 MEMOUT
CSMA/CD 22 Yes MEMOUT MEMOUT

Robot 300 No 356 360 10 87 43147361 486 120
Robot 500 No 596 600 58 98 199601281 2322 233
Robot 1000 No 1196 1200 182 145 TIMEOUT
Robot 2000 No 2396 2400 1153 365 TIMEOUT
Robot 3000 No TIMEOUT MEMOUT
Robot 300 Yes 376 380 18 97 92655832 1067 165
Robot 500 Yes 626 630 132 129 429037638 4965 356
Robot 1000 Yes 1251 1255 401 256 TIMEOUT
Robot 2000 Yes 2501 2505 8011 1061 MEMOUT
Robot 3000 Yes TIMEOUT MEMOUT
Tank 100 No 28 19 3 91 85852 183 416
Tank 300 No 28 19 14 125 -F1 512034 1532 1309
Tank 500 No 28 19 32 176 -F1 1993710 13991 3882
Tank 1000 No 28 19 50 280 MEMOUT
Tank 5000 No 28 19 1724 996 MEMOUT
Tank 10000 No 28 19 8077 1923 MEMOUT
Tank 10 Yes 54 35 1 80 482227 55 280
Tank 20 Yes 42 29 2 82 1978965 449 1668
Tank 30 Yes 45 31 2 84 MEMOUT
Tank 100 Yes 55 36 8 113 TIMEOUT
Tank 500 Yes 44 31 51 205 MEMOUT
Tank 1000 Yes 53 35 107 359 MEMOUT
Tank 5000 Yes 45 32 1865 1354 MEMOUT
Tank 10000 Yes 53 35 8349 3808 MEMOUT

systems: quadratic in the number of components for Fischer, linear in the edge
length of the grid for Robot, or even of constant size for CSMA/CD and Tank.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theo. Comp. Sci. 126(2) (1994)
2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:

UPPAAL-Tiga: Time for playing games! In: CAV. (2007)
3. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing uppaal

over 15 years. Softw., Pract. Exper. 41(2) (2011) 133–142
4. David, A.: UPPAAL DBM Library release 2.0.8 (2011)
5. Ehlers, R., Mattmüller, R., Peter, H.J.: Combining symbolic representations for

solving timed games. In: FORMATS. (2010)
6. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed

systems (an extended abstract). In: STACS. (1995)
7. Somenzi, F.: CUDD: CU Decision Diagram package release 2.4.2 (2009)

6


