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Abstract. We study the synthesis problem for specifications of the common frag-
ment of ACTL (computation tree logic with only universal path quantification)
and LTL (linear-time temporal logic). Key to this setting is a novel construction
for translating properties from LTL to very-weak automata, whenever possible.
Such automata are structurally simple and thus amenable to optimizations as well
as symbolic implementations.
Based on this novel construction, we describe a synthesis approach that inherits
the efficiency of generalized reactivity(1) synthesis [27], but is significantly richer
in terms of expressivity.

1 Introduction

Synthesizing reactive systems from functional specifications is an ambitious challenge.
It combines the correctness assurance that systems obtain after model checking with
the advantage to skip the manual construction step for the desired system. As a conse-
quence, a rich line of research has emerged, witnessed by the fact that recently, off-the-
shelf tools for this task have become available.

A central question in synthesis is: what is the right specification language that al-
lows us to tackle the synthesis problem for its members efficiently, while still having
enough expressivity to capture the specifications that system designers want to write?

Some recent approaches focused on supporting full linear-time temporal logic as the
specification language. While the synthesis problem for such specifications was shown
to be 2EXPTIME-complete, by focusing on specifications of the form that engineers
tend to write, significant progress could recently be obtained for full LTL [17, 13]. Still,
it is not hard to write small specifications that cannot be tackled by such tools.

At the same time, there are numerous techniques that trade the high expressivity of
logics such as LTL against the computational advantages of only having to deal with
structurally simpler specifications. A prominent approach of this kind is generalized
reactivity(1) synthesis [27]. It targets specifications that consist of some set of assump-
tions (which we can assume the environment of the system to fulfill) and some set of
guarantees that the system needs to fulfill. Both assumptions and guarantees can contain
only safety properties that relate the input and output in one computation cycle with the
input and output in the next computation cycle and basic liveness properties over current
input and output. In order to encode more complex properties, the output of the system
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to be designed can be widened and the additional bits can be used to stitch together
more complex properties. Getting such an encoding right and efficient is manual and
cumbersome work, which is why Somenzi and Sohail coined the term “pre-synthesis”
for such an operation [28, 11].

It is apparent that there is a desperate need for a sweet spot between the high ex-
pressivity but low performance that full LTL synthesis approaches offer, and fast but
low-level synthesis approaches such as generalized reactivity(1) synthesis, where cur-
rently, pre-synthesis is crucial to its performance.

In this paper, we present ACTL ∩ LTL synthesis as a solution to this problem.
Our approach targets specifications of the form

∧
a∈Assumptions a →

∧
g∈Guarantees g,

where all assumptions and guarantees are written in LTL, with the restriction that they
must also be representable in ACTL, i.e., computation tree logic with only universal
path quantification. We reduce the synthesis problem for such specifications to solving
symbolically represented three-color parity games, which is the reasoning framework
from which also generalized reactivity(1) synthesis takes its good efficiency. In particu-
lar, such games can be solved in time quadratic in the number of positions (see, e.g., [1]).

The reason why ACTL ∩ LTL is such an interesting fragment for synthesis is the
fact that the fragment has universal very-weak automata as the characterizing automa-
ton class. These automata do not only allow the application of simple, yet effective
minimization algorithms, but give rise to a straight-forward efficient symbolic encod-
ing into binary decision diagrams (BDDs), without the need for pre-synthesis. Alterna-
tively, other symbolic data structures such as anti-chains [16] can also be used, but for
the simplicity of the initial evaluation of the approach in this paper, we use BDDs.

For best performance in solving the parity games that we build in our approach, we
present a novel construction that defers choosing the assumption and guarantee parts
to be satisfied next to the system player and the environment player, respectively. This
keeps the number of iterations that need to be performed in the fixed-point based game
solving process small and leads to short computation times of the game solving process.

The contribution of this paper is threefold. First of all, it describes a new efficient
synthesis workflow for the common fragment of ACTL and LTL. Secondly, it describes
the first algorithm for translating an LTL formula that lies in this common fragment
into its characterizing automaton class, i.e., universal very-weak automata. As a corol-
lary, we obtain a translation algorithm from LTL to ACTL, whenever possible. Third,
we introduce a technique to speed up the game solving process for generalized reactiv-
ity(1) games by letting the two players in the game choose the next obligation for the
respective other player instead of using counters as in previous approaches.

We start with preliminaries in Sect. 2, where we discuss the basic properties of very-
weak automata. Then, we describe the construction to obtain universal very-weak au-
tomata from LTL formulas that are also representable in ACTL. Afterwards, we present
the smart reduction of our synthesis problem to three-color parity games in Sect. 4. Sec-
tion 5 then discusses the twists and tricks for solving parity games symbolically in an
efficient way and describes how a winning strategy that represents an implementation
satisfying the specification can be extracted. Finally, Sect. 6 contains an experimen-
tal evaluation of the approach using a prototype toolset for the overall workflow. We
conclude in Sect. 7.
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2 Preliminaries

Basics: Given a (finite) alphabet Σ, we denote the sets of finite and infinite words of Σ
asΣ∗ andΣω , respectively. Sets of words are called languages. A useful tool for repre-
senting languages over finite words are regular expressions, and ω-regular expressions
are regular expressions that are enriched by the (·)ω operator, which denotes infinite
repetition. This way, languages over infinite words can be expressed.

Given some monotone function f : 2X → 2X for some finite set X , we define
µ0.f = ∅, ν0.f = X and for every i > 0, set µi.f = (f ◦ µi−1.f) and νi.f =
(f ◦ νi−1.f). For a monotone function f and finite X , it is assured that the series
µ0.f, µ1.f, µ2.f . . . and ν0.f, ν1.f, ν2.f . . . converge to some limit functions, which
we denote by µ.f and ν.f , respectively.

Automata: For reasoning about (ω-)regular languages, automata are a suitable tool. In
this paper, we will be concerned with deterministic, non-deterministic, non-determinis-
tic very-weak and universal very-weak automata over finite and infinite words. For all
of these types, the automata are described by tuples A = (Q,Σ,Q0, δ, F ) with the set
of states Q, the alphabet Σ, the set of initial states Q0 ⊆ Q, and the transition function
δ : Q × Σ → 2Q. For non-deterministic or deterministic automata, F ⊆ Q is called
the set of accepting states, whereas for universal automata, F ⊆ Q denotes the set of
rejecting states. For deterministic automata, we require that |Q0| = 1 and that for every
(q, x) ∈ Q × Σ, we have |δ(q, x)| ≤ 1. For very-weak automata, we require them to
have an order f : Q→ IN on the states such that for every transition from a state q to a
state q′ for some some x ∈ Σ (i.e., q′ ∈ δ(q, x)), if q′ 6= q, then f(q′) > f(q). Figure 1
contains examples of very-weak automata. Intuitively, the order requires the automaton
to be representable in a figure such that all non-self-loop transitions lead from top to
bottom.

Given a word w = w0w1w2 . . . wn ∈ Σ∗, we say that π = π0π1 . . . πn+1 is a finite
run for A and w if π0 ∈ Q0 and for 0 ≤ i ≤ n, πi+1 ∈ δ(πi, wi). Likewise, for a word
w = w0w1w2 . . . ∈ Σω , we say that π = π0π1 . . . is an infinite run for A and w if
π0 ∈ Q0 and for all i ∈ IN, πi+1 ∈ δ(πi, wi).

A non-deterministic (NFA), non-deterministic very-weak (NVWF) or deterministic
(DFA) automaton over finite words accepts all finite words that have some run that ends
in an accepting state. A universal automaton over finite words accepts all finite words
for which all runs do not end in a rejecting state. A non-deterministic automaton over
infinite words accepts all infinite words that have some run that visits accepting states
infinitely often. A universal very-weak automaton over infinite words (UVW) accepts
all infinite words for which all runs visit rejecting states only finitely often.

We say that two automata are equivalent if they accept the same set of words.
This set of words is also called their language. We define the language of a state q
to mean the language of the automaton that results from setting the initial states to
{q}. The functions δ̂ : 2Q × 2X → 2Q and δ̂∗ : 2Q × 2X → 2Q with δ̂(Q′, X) =⋃
{q′∈Q′,x∈X} δ(q

′, x) and δ̂∗(Q′, X) = {q′ ∈ Q | ∃k ∈ IN, x1, x2, . . . , xk ∈ X, q1,
q2, . . . , qk+1 ∈ Q.(q1 ∈ Q′ ∧ qk = q′ ∧ ∀1 ≤ i ≤ k. qi+1 ∈ δ(qi, xi))} will simplify
the presentation in Sect. 3. Deterministic automata over finite words also appear as dis-
tance automata in this paper. The only difference to non-distance automata is the fact
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that for these, we have δ : Q × Σ → 2Q×{0,1}. We assign with each of their runs the
accumulated cost, obtained by adding all of the second components of the transition
target tuples for the transitions along the run. The cost of a word is the minimal cost of
an accepting run.

Labeled parity games: A parity game is defined as a tuple G = (V0, V1, Σ0, Σ1, E0,
E1, v0, c) with the game position sets V0 and V1 for player 0 and player 1, respectively,
the action sets Σ0 and Σ1, the edge functions E0 : V0×Σ0 → V1 and E1 : V1×Σ1 →
V0, the initial position v0 ∈ V0, and the coloring function c : (V0 ] V1)→ IN.

A decision sequence in G is a sequence ρ = ρ00ρ
1
0ρ

0
1ρ

1
1 . . . such that for all i ∈

IN, ρ0i ∈ Σ0 and ρ1i ∈ Σ1. A decision sequence ρ induces an infinite play π =
π0
0π

1
0π

0
1π

1
1 . . . if π0

0 = v0 and for all i ∈ IN and p ∈ {0, 1}, Ep(πpi , ρ
p
i ) = π1−p

i+p .
Given a play π = π0

0π
1
0π

0
1π

1
1 . . ., we say that π is winning for player 1 if max{c(v) |

v ∈ V0 ] V1, v ∈ inf(π)} is even for the function inf mapping a sequence onto the
set of elements that appear infinitely often in the sequence. If a play is not winning for
player 1, it is winning for player 0.

Given some parity game G = (V0, V1, Σ0, Σ1, E0, E1, v0, c), a strategy for player
0 is a function f0 : (Σ0 × Σ1)

∗ → Σ0. Likewise, a strategy for player 1 is a func-
tion f1 : (Σ0 × Σ1)

∗ × Σ0 → Σ1. In both cases, a strategy maps prefix decision
sequences to an action to be chosen next. A decision sequence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1 . . . is

said to be in correspondence to fp for some p ∈ {0, 1} if for every i ∈ IN, we have
ρpi = fp(ρ

0
0ρ

1
0 . . . ρ

1−p
i+p−1). A strategy is winning for player p if all plays in the game

that are induced by some decision sequence that is in correspondence to fp are winning
for player p. It is a well-known fact that for parity games, there exists a winning strategy
for precisely one of the players (see, e.g., [26, 22]).

Labeled parity games for synthesis: Parity games are a computation model for systems
that interact with their environment. For the scope of this paper, let us assume that
player 0 represents the environment of a system that we want to synthesize, and player
1 represents the system itself. The action set of player 0 corresponds to the inputs to
the system and the action set of player 1 corresponds to the output. Given a language L
over infinite words for the desired properties of a system, the main idea when building
a parity game for synthesis is to ensure that the decision sequences that induce winning
plays are the ones that, when read as words, are in L. If the game is then found to be
winning for the system player, we can take a strategy for that player to win the game
and read it as a Mealy automaton that is guaranteed to satisfy the specification. Note that
all constructions in this paper can equally be used for a Moore automaton computation
model. The two players then swap roles in this case.

Linear-time temporal logic: Linear-time temporal logic (LTL) is a popular formalism to
describe properties of systems to be synthesized or verified. LTL formulas are built in-
ductively from atomic propositions in some set AP and sub-formulas using the Boolean
operators ¬, ∨, ∧, and the temporal operators X, F, G, and U. Given an infinite word
w = w0w1w2 ∈ (2AP)ω , a LTL formula over AP either holds on w or not. The words
for which an LTL formula holds are also called its models. A full definition of LTL can
be found in [12, 16, 18].
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Properties of very-weak automata

As foundation for the constructions of the sections to come, we discuss some properties
of very-weak automata over finite and infinite words here. Given two automata, we call
computing a third automaton that represents the set of words that are accepted by both
automata taking their conjunction, while taking their disjunction refers to computing
a third automaton that accepts all words that are accepted by either of the two input
automata.

Proposition 1. Universal and non-deterministic very-weak automata over infinite and
finite words are closed under disjunction and conjunction. Given two very-weak au-
tomata A and A′ with state sets Q and Q′, we can compute their disjunctions and
conjunctions in polynomial time, with the following state counts of the results:

1. for universal automata and taking the conjunction: |Q|+ |Q′| states,
2. for non-deterministic automata and taking the disjunction: |Q|+ |Q′| states,
3. for universal automata and taking the disjunction: |Q| · |Q′| states, and
4. for non-deterministic automata and taking the conjunction: |Q| · |Q′| states.

Proof. For the first two cases, the task can be accomplished by just merging the state
sets and transitions. For cases 3 and 4, a standard product construction can be applied,
with defining those states in the product as rejecting/accepting for which both corres-
ponding states in the factor automata are rejecting/accepting, respectively [20]. ut

Proposition 2. Every very-weak automaton has an equivalent one of the same type
for which no accepting/rejecting state has a non-self-loop outgoing edge (called the
separated form of the automaton henceforth).

Proof. Duplicate every accepting/rejecting state in the automaton and let the dupli-
cate have the same incoming edges. Then, mark the original copy of the state as non-
accepting/non-rejecting. The left part of Fig. 1 shows an example of such a state dupli-
cation. ut

The fact that every automaton has a separated form allows us to decompose it into a set
of so-called simple chains:

Definition 1. Given an alphabet Σ, we call a subset Q′ of states of an automaton over
Σ a simple chain if there exists a transition order on Q′, i.e., a bijective function f :
Q′ → {1, . . . , |Q′|} such that:

– only the state q with f(q) = 1 is initial,
– only the state q with f(q) = |Q′| is accepting/rejecting,
– there is no transition in the automaton between a state in Q′ and a state not in Q′,
– for every transition from q to q′ in the automaton, f(q) ≤ f(q′) ≤ f(q) + 1.

Furthermore, regular expressions that are an unnested concatenation of elements of the
form A, A∗, and Aω for A ⊆ Σ are called vermicelli.

As an example, the right-most sequence of states in Fig. 1 is a simple chain and can
equivalently be represented as the vermicelli Σ∗a(b)∗b(c)ω . Note that every vermicelli
can be translated to a language-equivalent set of simple chains.
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q0

q1

q2

∗

a

b

b

c

q0

q1 q1q′1

q2

∗

a a

b b
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c

q0

q1
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a

b

q0q′0

q1q′1

q2q′2

∗

a
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Fig. 1. Example for converting a UVW into separated form and subsequently decomposing it
into simple chains. The automata in this example are equivalent to the LTL formula G(a →
XF(b ∧ XFc)). We use Boolean combinations of atomic propositions and their negation as edge
labels here. For example, b refers to all elements x ∈ Σ = 2AP for which b /∈ x. Rejecting states
are doubly-circled.

Proposition 3. Every very-weak automaton can be translated to a form in which it only
consists of simple chains.

Proof. Convert the very-weak automaton into separated form and enumerate all paths
to leaf nodes along with the self-loops that might possibly be taken. For every of these
paths, construct a simple chain. ut

3 Translating LTL formulas into UVWs

Universal very-weak automata (UVW) were identified as a characterizing automaton
class for the intersection of ACTL and LTL by Maidl [25]. She also described an algo-
rithm to check for a given ACTL formula if it lies in the intersection. For the LTL case,
Maidl defined a syntactic fragment of it, named LTLdet, whose expressivity coincides
with that of ACTL ∩ LTL. However, she did not show how to translate an LTL formula
into this fragment whenever possible, and the fragment itself is cumbersome to use, as
it essentially requires the specifier to describe the structure of a UVW in LTL, and is
not even closed under disjunction, although UVW are. Thus, for all practical means,
the question how to check for a given LTL formula if it is contained in ACTL ∩ LTL
remained open.

When synthesizing a system, the designer of the system specifies the desired se-
quence of events, for which linear-time logics are more intuitive to use than branching-
time logics. Thus, to use the advantage of universal very-weak automata in actual syn-
thesis tool-chains, the ability to translate from LTL to UVW is highly desirable.

Recently, Bojańczyk [4] gave an algorithm for testing the membership of the set of
models of an LTL formula in ACTL ∩ LTL after the LTL formula has been translated
to a deterministic parity automaton. However, the algorithm cannot generate a universal
very-weak automaton (UVW) from the parity automaton in case of a positive answer.
The reason is that the algorithm is based on searching for so-called bad patterns in the
automaton. If none of these are present, the deterministic parity automaton is found
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to be convertible, but we do not obtain any information about how a UVW for the
property might look like. Here, we reduce the problem of constructing a UVW for a
given ω-regular language to a sequence of problems over automata for finite words.
We modify a procedure by Hashiguchi [19] that builds a distance automaton to check
if a given language over finite words can be decomposed into a set of vermicelli (see
Def. 1). Our modification adds a component to keep track of vermicelli already found.
This way, by iteratively searching for vermicellis of increasing length in the language,
we eventually find them all and obtain a full language decomposition.

Since Maidl [25, Lemma 11] described a procedure to translate a UVW to an equiv-
alent ACTL formula, we obtain as a corollary also a procedure to translate from LTL to
ACTL, whenever possible.

3.1 The case of automata over infinite words

We have seen that every UVW can be translated to a separated UVW. In a separated
UVW, we can distinguish rejecting states by the set of alphabet symbols for which the
states have self-loops. If two rejecting states have the same set, we can merge them
without changing the language of the automaton. As a corollary, we obtain that a UVW
can always be modified such that it is in separated form and has at most 2|Σ| rejecting
states. We will see in this section that obtaining a UVW for a given language L over
some alphabet Σ can be done by finding a suitable decomposition of the set of words
that are not inL among these up to 2|Σ| rejecting states, and then constructing the rest of
the UVW such that words that are mapped to some rejecting state in the decomposition
induce runs that eventually enter that rejecting state and stay there forever.

Definition 2. Given a language L over infinite words from the alphabet Σ, we call
a function f : 2Σ → 2Σ

∗
an end-component decomposition of L if L = Σω \⋃

X⊆Σ(f(X) · Xω). We call f a maximal end-component decomposition of L if for
every X ⊆ Σ, f(X) = {w ∈ Σ∗ | w ·Xω ∩ L = ∅}.

Definition 3. Given a separated UVW A = (Q,Σ,Q0, δ, F ) and an end-component
decomposition f , we say that f corresponds to A if for (q1, X1), . . . , (qm, Xm) being
the rejecting states and alphabet symbols under which they have self-loops, we have:

– for all i 6= j, Xi 6= Xj;
– for all 1 ≤ i ≤ m: f(Xi) = {w0w1 . . . wk ∈ Σ∗ | qi ∈ δ̂(. . . δ̂(δ̂(Q0, {w0}), . . .),
{wk})};

– for all X ⊆ Σ with X /∈ {X1, . . . , Xm}, we have f(X) = ∅.

As an example, the end-component decomposition that corresponds to the UVW in the
middle part of Fig. 1 is a function f with f(b) = Σ∗a(b)∗, f(c) = Σ∗a(b)∗b(c)∗, and
f(X) = ∅ for X 6= b and X 6= c. The decomposition is not maximal as, for example,
the word {a}∅ω is not in the language of the automaton, but we have {a} /∈ f({∅}) = ∅.

By the definition of corresponding end-components, every separated UVW has one
unique corresponding end-component decomposition. On the other hand, every lan-
guage has one maximal end-component decomposition. The key result that allows us
to reduce finding a UVW for a given language to a problem on finite words combines
these two facts:
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Lemma 1. Let L be a language that is representable by a universal very-weak au-
tomaton. Then, L is also representable as a separated UVW whose corresponding end-
component decomposition is the maximal end-component decomposition of L.

Proof. Let a UVW be given whose end-component decomposition f is not maximal.
The decomposition can be made maximal by taking f ′(X) =

⋃
X′⊇X f(X

′) for every
X ⊆ Σ, without changing the language. Building a corresponding UVW only requires
taking disjunctions of parts of the original UVW. Since we know that UVW are closed
under disjunction, it is assured that there also exists a UVW that corresponds to f ′. ut

Thus, in order to obtain a UVW for a given language L ⊂ Σω , we can compute the
maximal end-component decomposition f ′ of L, and for every end componentX ⊆ Σ,
compute a non-deterministic very-weak automaton over finite words for f ′(X).

Starting with an LTL formula, we can thus translate it to a UVW (if possible) as
follows: first of all, we translate the LTL formula to a deterministic Büchi automata
(see, e.g., [9] for an overview). Note that as the expressivities of LTL and deterministic
Büchi automata are incomparable, this is not always possible. If no translation exists,
we however know that there also exists no UVW for the LTL formula, as all languages
representable by UVW are also representable by deterministic Büchi automata. After
we have obtained the Büchi automaton, we compute for every possible end-component
X ⊆ Σ from which states S in the automaton every word ending with Xω is rejected.
This is essentially a model checking problem over an automaton with Büchi acceptance
condition. This way, for each end component, a deterministic automaton over finite
words with S as the set of accepting states then represents the prefix language.

3.2 Decomposing a language over finite words into a non-deterministic
very-weak automaton

This problem of deciding whether there exists a non-deterministic very-weak automa-
ton for a language over finite words is widely studied in the literature. However, con-
structive algorithms that compute such an automaton are unknown. Hashiguchi studied
a more general version of the problem in [19]. His solution is based on computing the
maximal distance of an accepted word in a distance automaton. Bojańczyk [4] recently
gave a simpler algorithm.

Here, we build on the classical construction by Hashiguchi and modify it in order
to be constructive. We describe an iterative algorithm that successively searches for
vermicelli in the language to be analyzed. In a nutshell, this is done by searching for
accepting words of minimal distance in a distance automaton. Whenever a new vermi-
celli is found, the automaton is modified in order not to accept words that are already
covered by vermicelli that have been found before. At the same time, the new vermi-
celli can be read from the state sequence in the accepting run. The distance automaton
is built as follows.

Definition 4. Given a DFAA = (QA, Σ,QA0 , δ
A, FA) for the language to be analyzed

and a NVWF B = (QB, Σ,QB0 , δ
B, FB) for the vermicelli already found, the non-

deterministic vermicelli-searching distance automaton over finite words D = (Q,Σ,
Q0, δ, F ) is defined as follows:
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Q = 2Q
A
× 2Σ × B× 2Q

B

Q0 = {(QA0 , ∅, false, QB0 )}
F = {(S,X, b,R) | S ⊆ FA, (R ∩ FB) = ∅}

δ((S,X, b,R), x) = {((S,X, b,R′), 0) | R′ = δ̂B(R, {x}), x ∈ X, b = true}

∪ {((S′, X ′, true, R′), 1) | R′ = δ̂B(R, {x}), x ∈ X ′, S′ = δ̂A,∗(S,X ′)}

∪ {((S′, X ′, false, R′), 1) | R′ = δ̂B(R, {x}), x ∈ X ′, S′ = δ̂A(S,X ′)}
for all (S,X, b,R) ∈ Q, x ∈ Σ

The states in a vermicelli-searching automaton D are four-tuples (S,X, b,R) such that
X and b represent an element in a vermicelli, where b tells us if the current vermicelli
element X is starred. During a run, we track in S in which states in A we can be in
after reading some word that is accepted by a vermicelli represented by the vermicelli
elements observed in theX and b state components along the run ofD so far. Whenever
we have S ⊆ FA, then we know that all these words are accepted by A. At the same
time, the R component simulates all runs of the NVWF B, and the definition of F
ensures that no word that is in the language of B is accepted by D. Thus, D can only
find vermicelli that contain some word that is not accepted by B in their language.
Transitions with cost 1 represent moving on to the next vermicelli element.

Theorem 1. Let A be an DFA, B be a NVWF and D be the corresponding vermicelli-
searching distance automaton. We have:

– L(D) = L(A) \ L(B)
– Let L(A) contain a vermicelli V = A1 . . . Ak, where every Ai is either of the form
X∗ or X for some X ⊆ Σ. If V is not covered by L(B), then D accepts some
word w that is a model of V with a run of distance k. Along this run, the first three
state components only change during transitions with a cost of 1, and the second
and third component in between changes describe the alphabet symbol sets in the
vermicelli and whether the vermicelli elements are starred or not.

As a consequence, since every UVW of size n can be described by a set of vermicelli
in which each vermicelli is of length at most n, we can compute a UVW representation
of A by using Algorithm 1. Note that the algorithm does not terminate if A cannot be
represented as a very-weak automaton. Since we can however apply the algorithm by
Bojańczyk [4] beforehand to verify the translatability, this imposes no problem.

4 Reduction of the Synthesis Problem to Parity Games

In this section, we explain how to reduce the synthesis problem for specifications of
the form

∧
a∈Assumptions a→

∧
g∈Guarantees g (or shorter, in assumptions→guarantees

form), for which each of the assumptions and guarantees is in the common fragment of
ACTL and LTL, to solving a parity game. We have discussed in the previous section
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Algorithm 1 Translating a DFA A into a non-deterministic very-weak automaton B.
1: B = (∅, Σ, ∅, ∅, ∅)
2: repeat
3: D = vermicelli searching automaton for A and B
4: r = accepting run of minimal distance in D
5: if r was found then
6: Add r as vermicelli to B
7: end if
8: until L(D) = ∅

how one assumption or guarantee can be converted to a UVW. As the conjunction of
two UVW can be taken by just merging the state sets and the initial states, we also
know how to compute one UVW for all of the assumptions and one UVW for all of the
guarantees. So it remains to be discussed how we combine these two UVW into a game
that captures the overall specification.

Bloem et al. [1] describe a way to translate a specification of the assumptions→gua-
rantee form, in which all assumptions and guarantees are in form of deterministic Büchi
automata, into a three-color parity game. Essentially, the construction splits the process
by converting the assumptions and guarantees to a so-called generalized reactivity(1)
game, and then modifying the game structure and adjusting the winning condition to
three-color parity. When converting the game, assumption and guarantee pointers rep-
resent which assumption and guarantee is observed next for satisfaction. The pointers
increment one-by-one, which makes the game solving process a tedious task; for ex-
ample, if it is the last guarantee (in some assumed order) that the system cannot satisfy,
then during the game solving process, this information has to be propagated through all
the other pointer values before the process can terminate.

As a remedy, we describe an improved construction here, and let the two players set
the pointers. This way, the winning player can set the assumption or guarantee pointer
to the problematic assumption or guarantee early in the play, which reduces the time
needed for game solving. The game only has colors other than 0 for positions of the
environment player, and the states are described as six-tuples. The first two tuple com-
ponents describe in which states the assumption and guarantee UVW are, followed by
the assumption and guarantee pointers that are updated by the system and environment
players, respectively. The last two components are Boolean flags that describe whether
recently, the assumption (guarantee) state that the respective pointer points to has been
left, or the system (environment) player has changed her pointer value, respectively,
which is then reflected in the color of the game position. On a formal level, the parity
game is built as follows:

Definition 5. Let Aa = (QA, Σ,QA0 , δ
A, FA) and Ag = (QG, Σ,QG0 , δ

G, FG) be
two UVW that represent assumptions and guarantees, and ΣI and ΣO be sets such
that Σ = ΣI × ΣO. Without loss of generality, let furthermore FA = {1, . . . ,m}
and FG = {1, . . . , n}. We define the induced synthesis game as a parity game G =
(V0, V1, ΣI , ΣO, E0, E1, v0, c) with:

V0 = 2Q
A

× 2Q
G

× {1, . . . ,m} × {1, . . . , n} × B× B
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V1 = V0 ×ΣI
E0 = {((SA, SG, dA, dG, bA, bG), x) 7→ (SA, SG, dA, d′G, false, b′G, x) | x ∈ ΣI ,

(dG = d′G) ∨ (b′G = true)}
E1 = {((SA, SG, dA, dG, bA, bG, x), y) 7→ (S′A, S′G, d′A, dG, b′A, b′G) | y ∈ ΣO,

S′A = δA(SA, (x, y)), S′G = δG(SG, (x, y)),

b′G = (bG ∨ (dG /∈ S′G) ∨ (dG /∈ δG(dG, (x, y)))),
b′A = ((dA 6= d′A) ∨ (dA /∈ SA) ∨ (dA /∈ δA(dA, (x, y))))}

v0 = (QA0 , Q
G
0 , 1, 1, false, false)

c = {V1 ∪ {(qA, qG, dA, dG, bA, bG) | ¬bA ∧ ¬bG} 7→ 0, {(qA, qG, dA, dG,
bA, bG) | bA ∧ ¬bG} 7→ 1, {(qA, qG, dA, dG, bA, bG) | bG} 7→ 2}

For the central correctness claim of this construction, we need some more notation.
Given a play π = π0

0π
1
0π

0
1π

1
1 . . . for a decision sequence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1 . . . in the game,

we say that a state q ∈ QA is left at position k ∈ IN if for π1
k = (SA1 , S

G
1 , d

A
1 , d

G
1 , b

A
1 ,

bG1 , ρ
0
k−1) and π0

k+1 = (SA2 , S
G
2 , d

A
2 , d

G
2 , b

A
2 , b

G
2 ), we have q /∈ SA1 or q /∈ δ(q, (ρ0k,

ρ1k)). The construction of G assures that this is the case whenever any run of the assump-
tion automaton corresponding to the first k choice pairs in the decision sequence leaves
state q in the k + 1th round or is not in state q in the kth round. The case for the guar-
antee automaton is analogous. We say that a player rotates through the possible pointer
values if whenever the state that the pointer refers to is left, the player increases it to the
next possible value. In case the highest value is reached, the pointer is set to 1 instead.

Theorem 2. Let Aa and Ag be two UVWs over the alphabet Σ = ΣI ×ΣO, and G be
the induced synthesis game by Def. 5. The winning strategies for player 1 ensure that
along any decision sequence that corresponds to the strategy and in which the input
player rotates though the guarantee pointer values, either the sequence is not accepted
by Aa, or the sequence is accepted by Ag . Furthermore, every Mealy machine with the
inputΣI and outputΣO for which along any of its runs, the run is either rejected byAa
or accepted by Ag induces a winning strategy in G by having player 1 rotate through
the possible assumption pointer values.

The main message of Theorem 2 is that the games built according to Def. 5 are suit-
able for solving the synthesis task. Note that there are plays in the game that are winning
for the system player, but do not correspond to words that are models of the specifica-
tion. The reason is that the environment player is not forced to iterate infinitely often
over every possible pointer value for the final states of the guarantee automaton. Thus,
a winning strategy for the system player in this game does not correspond one-to-one
to a Mealy machine that satisfies the specification. For obtaining an implementation for
the specification, we need to apply some post-processing to a system player’s winning
strategy in the parity game.

The post-processing step is however not difficult: observe that the worst case for
the system player is that the environment player cycles through the guarantee pointer
values. This way, the system player can only win if the decision sequence in the game
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represents a model of the guarantees, or the system player is able to eventually point out
a rejecting state of the assumption automaton that is never left again. In both cases, the
specification is met. Thus, if we attach a round-robin counter for the assumption pointer
to a system player’s strategy, we obtain a valid result for our synthesis problem.

5 Solving Parity Games Symbolically

For an efficient implementation of the synthesis approach in this paper, the ability to
perform the symbolic solution of the parity game built according to the construction of
the previous section is imperative.

For the scope of this paper, we use a simple parity game solving algorithm that
is based on a fixed-point characterization of the winning set of positions in the game,
i.e., the positions from which, if the game is started there, the system player can win
the game. This approach has three advantages over the classical parity game solving
algorithms by Jurdzinski [22] or McNaughton [26]. First of all, it is simpler. Second,
it allows applying a nested fixed-point computation acceleration method by Browne
et al. [5] that essentially reduces the solution complexity to quadratic time (in the
number of game positions), which speeds up the game solving process in contrast to
McNaughton’s algorithm. Finally, the three-color parity game acceleration method for
Jurszinski’s algorithm by de Alfaro and Faella [8] is in some sense included for free.
Their technique searches for gaps in counter values for visits to positions with color 1.
These counters are an artifact that is introduced by Jurzinski’s algorithm. The gaps wit-
ness the case that the game solving process can be terminated before the convergence of
the counter values. As we do not need such counters here, our algorithm can terminate
early automatically without the need to search for such gaps. At the same time, we still
have a quadratic complexity of the game solving process. This advantage would also
generalize to more than three colors, which the acceleration method in [8] does not.

For the special case of the games in this paper (with only player 0 having colors
other than 0 and having only three colors in total), a characterization of the winning
positions in a parity game by Emerson and Jutla [14] reduces to the following fixed-
point equation:

W0 = νX2.µX1.νX0.(V1∩♦X0)∪(V0∩C0∩�X0)∪(V0∩C1∩�X1)∪(V0∩C2∩�X2)

In this formula, Ci represents the set of positions with color i (for every 0 ≤ i < 2),
and �Y and ♦Y describe, for every Y ⊆ V , the set of positions of player 0/player 1
from which player 1 can ensure that after the next move, a position in Y is reached,
respectively. All of the operations needed to evaluate this formula can be performed
symbolically [6]. Also, encoding the state space of the game into BDDs is not difficult:
we can simply assign one bit to every state in the assumption and guarantee automata,
one bit for every input or output atomic proposition, two bits for the “recently visited”
flags in the game, and dlog2me+ dlog2 ne bits for the pointers.

It remains to be discussed how a winning strategy can be computed symbolically
after the sets of winning positions for the two players have been identified. First of all,
for ψ = (V1 ∩ ♦X0) ∪ (V0 ∩ C0 ∩ �X0) ∪ (V0 ∩ C1 ∩ �X1) ∪ (V0 ∩ C2 ∩ �X2),
we compute a sequence of prefixed points Yi = νX2.µ

iX1.νX0.ψ for i ∈ IN. Then,
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we take the transition function E1 of the game and restrict it such that only actions that
result in ensuring that the successor position is in the set Yi for the lowest possible value
of i are taken. Any positional strategy that adheres to the restricted transition function
is guaranteed to be winning for the system player.

6 Experimental Results

To evaluate the new synthesis approach presented in this paper, it has been implemented
in a prototype tool-chain, written in C++ and Python. For the symbolic computation
steps, the BDD library CUDD v.2.4.2 [29] was employed. The first step in the tool-
chain is to apply the LTL-to-Büchi converter ltl2ba v.1.1 [18] to the negation of
all assumptions and guarantees of the specification. If the result happens to be very-
weak, we already have a UVW for the specification part. All remaining assumptions
and guarantees are first converted to deterministic Rabin automata using ltl2dstar
v.0.5.1 [23], then translated to equivalent deterministic Büchi automata (if possible),
and finally, after a quick check with the construction by Bojańczyk [4] that they repre-
sent languages in the common fragment of ACTL and LTL, translated to sets of vermi-
celli using the construction from Sect. 3. Whenever one of these translations is found
to be not possible for some assumption or guarantee, the specification is known not to
lie in the supported specification fragment and rejected. The construction from Sect. 3
is performed symbolically, using BDDs and dynamic variable reordering for the BDD
variables. The UVW for the individual assumptions and guarantees are then merged and
some simulation-based automaton minimization steps are applied. In contrast to gene-
ral bisimulation-based minimization techniques for non-deterministic Büchi automata
(see, e.g., [15]), we make use of the fact that the automata are very-weak, which allows
applying more optimizations. The optimization steps are:

– States that are reached by the same set of prefix words are merged (unless this
would introduce a loop).

– States with the same language are merged.
– For every pair of states (q, q′) in the automaton, if q is reached by at least as many

prefix words as q′, but q′ has a greater language than q, we remove q′.

Finally, we perform symbolic parity game solving for the synthesis game build using
the minimized UVW for the assumptions and guarantees as described in Sect. 4 and
Sect. 5. In case of realizability, we use an algorithm by Kukula and Shiple [24] to
compute a circuit description of the implementation. The prototype tool also checks
for which input/output bits it makes sense to encode the last values into the game as
an additional component. This can happen if there are many states in the UVW for
which it only depends on the last input and output whether we are in that state at a
certain time. Then, we can save the BDD bits for these states. For checking the resulting
implementations for correctness, we use NuSMV v.2.5.4 [7].

All computation times given in the following were obtained on an Intel Core 2 Duo
(1.86 Ghz) computer running Linux. All tools considered are single-threaded. We re-
stricted the memory usage to 2 GB and set a timeout of 3600 seconds. We compare
our new approach against Acacia+ v.1.2 [16, 17] and Unbeast v.0.6 [13], both
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using ltl2ba. Both synthesis tools implement semi-algorithms, i.e., we need to test
for realizability and unrealizability separately and only give the computation time of
the invocation that terminated for comparison. We could not compare against tools that
implement generalized reactivity(1) synthesis such as Anzu [21] as due to the non-
standard semantics (see [11], p. 4 for details) used there, the results would not be mean-
ingful.

Benchmarks

First of all, we consider the load balancer from [10]. This benchmark is for synthesis
tools that are capable of handling full LTL, and consists of 10 scalable specifications.
Out of these, we found 6 to be contained in the supported fragment by our approach,
including the final specification of the load balancer. Table 1 summarizes the results. It
can be observed that the two synthesis tools for full LTL are clearly outperformed on
the supported specifications.

As a second benchmark, we use the non-pre-synthesized AMBA high performance
bus arbiter specification described in [2], which is again scalable in the number of
clients. Here, our tool-chain is able to synthesize the two-client version in 151 sec-
onds, while the three-client version takes 1422 seconds. In both cases, most of the time
is spent on the symbolic game solving step. Neither Unbeast nor Acacia+ can han-
dle any of these two cases within 1 hour of computation time. According to [3], with
the pre-synthesized version of the specification of [2], the generalized reactivity(1) tool
used in the experimental evaluation of [3] could only handle up to four clients. Thus,
our approach comes close in terms of efficiency, but without the need of pre-synthesis.
For completeness, it must be added, however, that a (manual) rewriting of the specifica-
tion was later able boost the generalized reactivity(1) synthesis performance [3] on this
benchmark.

7 Conclusion

In this paper, we have proposed ACTL ∩ LTL as a specification fragment that com-
bines expressivity and efficiency for the synthesis of reactive systems. We gave novel
algorithms and constructions for the individual steps in the synthesis workflow. In par-
ticular, we gave the first procedure to obtain universal very-weak automata from LTL
formulas (if possible) and described a novel procedure for building a parity game from
assumption and guarantee properties that speeds up the game solving process by letting
the two players choose the next obligations to the respective other player in the game.

We did not fully exploit the favorable properties of UVW in the paper, and only see
the experimental evaluation herein as a start. For example, since in the structure of the
game built from UVWs, we keep track of in which assumption and guarantee states we
could be in, the game lends itself to the symbolic encoding of the prefixed points in the
game solving process using anti-chains [16].

Also, the approach can easily be extended to support properties whose negation is in
the common fragment of ACTL and LTL. This would allow using persistence properties
like “the system must eventually signal readiness forever”. We recently described in
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Table 1. Running times of the synthesis tools Acacia (“A”), Unbeast (“U”) and a prototype tool
for the approach presented in this paper (“B”) for the load balancer benchmark, using setting
labels from [10]. For each combination of assumptions and guarantees, it is reported whether the
specification was realizable (+/-) and how long the computation took (in seconds).

Tool Setting / # Clients 2 3 4 5 6 7 8 9
B

1
+ 0.3 + 0.4 + 0.4 + 0.4 + 0.5 + 0.5 + 0.6 + 0.6

U + 0.0 + 0.0 + 0.6 + 0.0 + 0.0 + 0.0 + 0.1 + 0.2
A + 0.3 + 0.3 + 0.3 + 0.3 + 0.4 + 0.4 + 0.4 + 0.5
B

1 ∧ 2
+ 0.4 + 0.4 + 0.4 + 0.5 + 0.6 + 0.9 + 2.2 + 6.9

U + 0.7 + 0.0 + 0.1 + 0.1 + 0.1 + 0.1 + 0.2 + 0.3
A + 0.3 + 0.4 + 1.2 + 0.3 + 0.4 + 0.7 + 1.8 + 5.5
B

1 ∧ 2 ∧ 3
- 0.5 - 0.6 - 0.7 - 0.9 - 1.2 - 1.7 - 3.4 - 7.6

U - 0.0 - 0.0 - 0.1 - 0.1 - 0.2 - 1.3 - 11.5 - 145.4
A - 0.3 - 0.3 - 0.4 - 2.9 timeout timeout timeout timeout
B

6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8
+ 0.6 + 0.8 + 0.9 + 1.2 + 1.6 + 2.2 + 4.0 + 9.7

U + 0.1 + 0.4 + 1.4 + 39.9 timeout timeout timeout timeout
A + 2.1 + 1.3 timeout timeout timeout timeout timeout timeout
B

6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9
- 0.7 - 0.9 - 1.2 - 1.6 - 2.1 - 3.2 - 5.5 - 11.5

U - 0.0 - 0.1 - 0.2 - 1.4 - 28.5 - 886.4 timeout timeout
A - 0.4 - 0.4 - 2.6 timeout timeout timeout timeout timeout
B

6 ∧ 7 ∧ 10→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9
+ 0.8 + 1.0 + 1.3 + 2.3 + 2.5 + 3.3 + 5.7 + 11.8

U + 0.3 + 2.2 + 23.7 + 632.5 timeout timeout timeout timeout
A + 0.9 + 0.8 + 16.3 timeout timeout timeout timeout timeout

[12] how generalized reactivity(1) synthesis can be extended to handle such properties,
resulting in five-color parity games. The constructions in this paper are easy to extend
accordingly.
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A Appendix

A.1 Notes to Lemma 1

Let a f be an end component decomposition. In the proof of Lemma 1, it is said that
the end component decomposition f ′ with f ′(X) =

⋃
X′⊇X f(X

′) for every X ⊆ Σ
is then a maximal end-component decomposition for the same language. For the sake
of completeness, let us derive here that (1) f ′ is an end component decomposition for
the same language, and that (2) f ′ is maximal.

1. Consider an end-component decomposition f̂ that we obtain from f by setting
f̂(X2) = f(X1) ∪ f(X2) for some X1 ⊆ Σ and X2 ⊆ Σ with X2 ⊆ X1, and
f̂(X ′) = f(X ′) for all X ′ 6= X2. Thus, f̂ is obtained from f by merging f(X1)
into f(X2). As f ′ with f ′(X) =

⋃
X′⊇X f(X

′) for every X ⊆ Σ can be obtained
from f by applying finitely many such merging operations, if we can prove that the
languages that f and f̂ are end-component decompositions of the same language,
then we also know this for f and f ′.
As X2 ⊆ X1, we have that:

f̂(X2) ·Xω
2 = (f(X1) ∪ f(X2)) ·Xω

2 ⊆ f(X1) ·Xω
1 ∪ f(X2) ·Xω

2

By taking the union with f(X1) ·Xω
1 in every part of this equation (and removing

the middle part), we obtain:

f(X1) ·Xω
1 ∪ f̂(X2) ·Xω

2 ⊆ f(X1) ·Xω
1 ∪ f(X2) ·Xω

2

As by the definition of f̂(X2), we have that f̂(X2) ·Xω
2 ⊇ f(X2) ·Xω

2 , it follows
that f(X1) ·Xω

1 ∪ f̂(X2) ·Xω
2 = f(X1) ·Xω

1 ∪ f(X2) ·Xω
2 . We can now deduce

that f and f̂ are end-component decompositions of the same language:

Σω \
⋃
X⊆Σ

(f(X) ·Xω)

= Σω \

 ⋃
X⊆Σ,X 6=X1,X 6=X2

(f(X) ·Xω)

 ∪ (f(X1) ·Xω
1 ) ∪ (f(X2) ·Xω

2 )


= Σω \

 ⋃
X⊆Σ,X 6=X1,X 6=X2

(f(X) ·Xω)

 ∪ (f(X1) ·Xω
1 ) ∪ (f̂(X2) ·Xω

2 )


= Σω \

⋃
X⊆Σ

(f̂(X) ·Xω)

2. Let us now prove that f ′ is a maximal decomposition. Let w ∈ Σ∗ and T =
{X1, . . . , Xn} be the subsets of Σ such that for all 1 ≤ i ≤ n, w · Xω

i ∩ L = ∅,
for L being the language such that f ′ is an end-component decomposition of it.
Observe the following facts:
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– First of all, T is a downwards-closed set, i.e., for all X ∈ T and X ′ ⊆ X , we
have X ′ ∈ T . This follows directly from the fact that w ·Xω ⊇ w ·X ′ω for all
X ′ ⊆ X .

– Furthermore, for all maximal elements Y ∈ T (i.e. there exists no X ⊃ Y
with X ∈ T ), we have that w ∈ f(Y ). This follows from the fact that for
Y = {x1, . . . xm}, we have w(x1x2 . . . xm)ω /∈ L by definition, and thus
for some X ⊇ Y , we must have w ∈ f(X) in order for the end component
decomposition not to miss that w(x1x2 . . . , xm)ω /∈ L. However, as for all
X ⊃ Y , by the definition of T , we also havew ·Xω

i ∩L 6= ∅, havingw ∈ f(X)
would lead to L 6= Σω \

⋃
X′⊆Σ(f(X

′) ·X ′ω). Thus, the only way for f to be
a valid end-component decomposition for L is to have w ∈ f(Y ).

As we have established that T is a downward-closed set and for all maximal elements
Y , we have w ∈ f(Y ), we know that for all X ⊆ Σ, we have X ∈ T (and thus
w ·Xω

i ∩ L = ∅) if and only if w ∈
⋃
X′⊇X f(X

′). Since this line of reasoning holds
for all w ∈ Σ∗, it follows that {w ∈ Σ∗ | w ·Xω ∩L = ∅} =

⋃
X′⊇X f(X

′), and thus,
f ′ is a maximal end-component decomposition.

A.2 On the relationships of UVW and deterministic Büchi automata

Proposition 4. Every UVW is representable as a deterministic Büchi automaton.

Proof. Let A = (Q,Σ, δ,Q0, F ) be a UVW. Without loss of generality, we assume
that F = {1, . . . ,m} for some m ∈ IN. We can construct an equivalent deterministic
Büchi automaton A′ = (Q′, Σ, δ′, Q′0, F

′) as follows:

Q′ = 2Q × {0, . . . ,m}

∀(S, 0) ∈ Q′, x ∈ Σ : δ′((S, 0), x) = (δ̂(S, {x}), 1)
∀(S, j) ∈ Q′, x ∈ Σ with j ≥ 1 and

j /∈ δ(j, x) ∨ j /∈ S : δ′((S, j), x) = (δ̂(S, {x}), (j + 1) modm)

∀(S, j) ∈ Q′, x ∈ Σ with j ≥ 1 and

j ∈ δ(j, x) ∧ j ∈ S : δ′((S, j), x) = (δ̂(S, {x}), j)
Q′0 = {(Q0, 0)}
F = {(S, 0) | S ⊆ Q}

Assume that for a given word w ∈ Σω , there exists some rejecting state q in A
that is eventually entered along some run and never left from that point onwards. The
construction ensures that then, the counter value cannot be increased from q to q + 1
(or to 0 if q = m) in the corresponding run of A′ anymore. As a consequence, A′ also
rejects the word as the counter value 0 cannot occur along the run more than once from
that time onwards.

On the other hand, if a word is accepted by the UVW, then every state in the UVW
along any of its runs is left (see the Definition of “left” on page 11) infinitely often.
Since the counter values increase whenever this happens (note that a state is always left
for all runs of the UVW at the same time), we get a value of 0 infinitely often, leading
to visiting accepting states in the deterministic Büchi automaton infinitely often. ut
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A.3 Proof of Theorem 1

Proof. For the first claim, note that during reading a finite input word, the fourth com-
ponent keeps track of in which states a run in B could be in. Only if there is no accepting
state in which B could be in,D can accept a word. At the same time, for any word in the
language of A, we can always take transitions that reset the Boolean flag to false, and
set the third component to the set that that contains only the current alphabet symbol.
This way, the first component only contains a singleton state in every instance of time
and represents a path to the accepting state in A.

For the second claim, given a word that is not accepted by B and a vermicelli that
contains the word, the construction of D ensures that we can build an accepting run in
which the first component of the states represents a sequence that contains an accepting
run ofA on the word. During the run, the second and third components are used to rep-
resent the vermicelli, and updated whenever for the word chosen, we move to the next
vermicelli element. The Boolean flag represents whether the current factor in the ver-
micelli has a ∗ or not, and the second component represents the subset of the alphabet in
the vermicelli element. Since a transition has a cost of 1 precisely at the points at which
we change these elements, the run has a cost of k. Along the way, the first component
is updated to represent all of the states in which A can be after having read any of the
words in the vermicelli so far. Since by assumption, we have a vermicelli whose models
are contained in the language ofA, all these runs need to be in a final state at the end of
the run. At the same time, since the word is not accepted by B and the last component
in the states track all possible runs in B, the state set in the fourth component does not
intersect with F at the end. Thus, the run outlined here is accepting. ut

A.4 Proof of Theorem 2

Proof. The construction of the game ensures that along any play π = π0
0π

1
0π

1
0 . . . that

corresponds to some decision sequence ρ = ρ00ρ
1
0ρ

0
1 . . ., the first component in every

position in π0 = π0
0π

0
1π

0
2 . . . (the sequence of positions of player 0 along the run)

always represents in which states the automaton Aa could be in after having read a
prefix of ρ̃ = (ρ00, ρ

1
0)(ρ

0
1, ρ

1
1), . . .. The same applies for the second component andAg .

If we have a winning strategy f for player 1 given, then it ensures that the highest color
that can occur along a play infinitely often is even. There are only two ways in which this
can happen: (1) if either eventually the assumption pointer is set to and left with a value
that refers to a state in the assumption UVW that is never left from that point onwards,
or (2) if every guarantee UVW state that the guarantee pointer is set to is eventually
left. In the latter case, since the input player rotates through all of the pointer values,
this means that they are all left infinitely often and thus the UVW Ag accepts the word.

For the second claim in the theorem, note that the construction ensures that if the
system player always cycles through the assumptions, then a position in the game with
color 1 can only be visited infinitely often if Aa accepts the decision sequence. Thus,
the run is winning for the system player if the assumptions are not fulfilled. On the other
hand, if the guarantees are fulfilled along the run, then every rejecting state inAg is left
infinitely often along the run, and thus color 2 is visited infinitely often regardless of
how the system player chooses the guarantee pointer values.


