
Risk-Averse Control of Markov Decision Processes with ω-regular
Objectives

Ruediger Ehlers1, Salar Moarref2, and Ufuk Topcu3

This is the author-archived version of the paper. The original publication is available on IEEE XPlore under http://dx.doi.org/10.1109/CDC.2016.7798306.
c© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Many control problems in environments that
can be modeled as Markov decision processes (MDPs) concern
infinite-time horizon specifications. The classical aim in this
context is to compute a control policy that maximizes the
probability of satisfying the specification. In many scenarios,
there is however a non-zero probability of failure in every
step of the system’s execution. For infinite-time horizon
specifications, this implies that the specification is violated
with probability 1 in the long run no matter what policy is
chosen, which prevents previous policy computation methods
from being useful in these scenarios.

In this paper, we introduce a new optimization criterion
for MDP policies that captures the task of working towards
the satisfaction of some infinite-time horizon ω-regular
specification. The new criterion is applicable to MDPs in
which the violation of the specification cannot be avoided in
the long run. We give an algorithm to compute policies that
are optimal in this criterion and show that it captures the
ideas of optimism and risk-averseness in MDP control: while
the computed policies are optimistic in that a MDP run enters
a failure state relatively late, they are risk-averse by always
maximizing the probability to reach their respective next goal
state. We give results on two robot control scenarios to validate
the usability of risk-averse MDP policies.

I. INTRODUCTION

The class of ω-regular specifications allows to concisely
capture long-term tasks for systems to be controlled. Con-
sequently, they have not only been used as specification
formalism for the control of deterministic systems, but also
found applications in control of probabilistic systems. In the
probabilistic case, the objective is typically to ensure that the
specification holds almost surely or with the highest possible
probability.

There are however many systems that do not admit any
control strategy that satisfies an ω-regular objective with
a non-zero probability. In such a case, all controllers are
equally bad: they violate the specification almost surely (or
surely). If, for example, we have a robot control scenario
where there is always a small probability that the robot
moves towards a wall (due to external influences), then a
specification that forbids colliding with the wall cannot be
fulfilled with a non-zero probability, as colliding with a
wall almost surely eventually happens. Yet, researchers have
proposed many approaches for controlling robots in such
environments in practice. In a nutshell, these approaches are
optimistic: why should we be intimidated by events that are

1 Rüdiger Ehlers is with the University of Bremen and DFKI GmbH,
Bremen, Germany

2 Salar Moarref is with the University of Pennsylvania, Philadelphia, PA,
USA.

3 Ufuk Topcu is with the University of Austin at Texas, TX, USA.

unavoidable but occur with small probability even in long
time spans when we can still satisfy the specification for
some time? Such approaches are typically also risk-averse:
within the actions that are available to the robot, those that
avoid the violation of the specification as long as possible
are preferred. A reasonable strategy for the robot could, for
example, try to stay clear of the walls and immediately take
action when it happens to get closer to the wall at runtime.
In this way, the robot could work towards satisfying its goals
even though in the long run, it will eventually collide with
a wall almost surely.

On a theoretical level, the infinite-horizon nature of ω-
regular specifications however prevents the immediate appli-
cation of optimism. If, with probability 1, the specification
is violated no matter what policy is used for controlling
the system, then all control policies are equally bad and no
best policy can be generated. While this fact may advocate
for an approach to system control that is not based on ω-
regular objectives, the infinitary nature of such objectives
allows to abstract from many details of the specification.
As an example, we can state in the ω-regular setting that
the robot should visit each of two regions in a workspace
infinitely often, which is a concise representation of the task
of patrolling between these regions. The specification does
not impose maximal times between visits to the regions,
which allows to optimize the risk-averseness of the policy.
Deviating from the concept of ω-regular objectives would
mean to impose time bounds between the visits to the
regions. But then we get a tradeoff between optimizing
for satisfying the specification as long as possible and the
lengths of the patrolling periods. So it is desirable to keep
the simplicity and conciseness of ω-regular specifications to
allow optimizing the probability to satisfy the specification
for at least some time.

In this paper, we show how to compute optimistic, yet
risk-averse policies for satisfying ω-regular objectives in
Markov decision processes (MDPs). We define an optimiza-
tion criterion that captures the task of computing policies
that satisfy ω-regular control objectives as long as possible,
and give an algorithm to compute these policies. The basic
idea is that we require the policy to have a labeling that
describes which states are considered to be goal states by the
policy, i.e., for which visiting them infinitely often ensures
that the specification is satisfied. An optimally risk-averse
policy maximizes the probability of reaching the next goal
state from the respective previous goal state. We argue that
this criterion matches the intuitive idea that the controller
should satisfy the specification as long as possible even if its

violation is almost surely unavoidable in the long run. We
validate the usability of our risk-averse policy definition and
the scalability of our policy computation algorithm on two
case studies for robot control in probabilistic environments.

II. RELATED WORK

MDPs are widely used in many areas such as engineering,
economics and biology, and have been successfully used to
model and control autonomous robots with uncertainty in
their sensing and actuation (see e.g., [1], [2], [3], [4]). In
these domains, the behavior of the system cannot be pre-
dicted with certainty, but it can be modeled probabilistically
through simulations or empirical trials. Our results in this
paper can be used in practical settings in which the system
cannot be controlled to satisfy a specification in the long run,
but some amount of risk-taking is acceptable. This is also in
contrast to earlier works on computing risk-averse policies
for MDPs without control objective (see, e.g., [5]), which are
concerned with reducing the risk of obtaining low rewards
in an MDP run at the expense of lowering the expected
rewards.

MDPs are also referred to as 1 1
2 -player games and belong

to a broader class of stochastic games. The algorithmic study
of stochastic games with respect to ω-regular objectives has
recently attracted significant attention [6], [7], [8], [9], [10],
[11]. See [12] for a detailed survey. The central question
about a game is whether a player has a strategy for winning
the game. There are several definitions for winning in a
stochastic game [12]. For example, one may ask if a player
has a strategy that ensures a winning outcome of the game,
no matter how the other player chooses her actions (sure
winning), or one may ask if a player has a strategy that
achieves a winning outcome with probability 1 (almost-sure
winning). In contrast to these qualitative winning criteria,
the quantitative solution [13], [9] amounts to computing the
value of the game, i.e., the maximal probability of winning
that a player can guarantee against any strategy chosen by
the opponent. The choice of MDPs in this paper is motivated
by their manageable complexity compared to more general
classes of stochastic games, and by their applicability to
many control problems. Ding et al. [14] gave an approach
to compute MDP policies that maximize the probability
of satisfying an ω-regular specification. They applied their
algorithm to robot indoor navigation. Svorenova et al. [15]
considered the problem of minimizing the expected cost
in between reaching goal states in MDPs for ω-regular
specifications. Our work uses a similar notion of goal states.
None of the mentioned works consider the synthesis of risk-
averse policies in case there is no strategy that wins with a
probability of greater than 0.

III. PRELIMINARIES

a) MDPs: A Markov decision process is defined as a
tuple M = (S,A,Σ, P, L, s0), where S is a finite set of
states, A is a finite set of actions, Σ is the label alphabet,
P : S × A→ P(S) ∪ {⊥} is the transition function, where
P(S) denotes the probability distributions over S and ⊥

denotes a disallowed action in a state, L : S → Σ is the
labeling function of M, and s0 ∈ S is the initial state
of the Markov chain. We say that some finite sequence
π = π0 . . . πn ∈ S∗ is a finite trace (or run) of M if there
exists a sequence of actions ρ = ρ0 . . . ρn−1 ∈ A∗ such
that for all i ∈ {0, . . . , n − 1}, we have P (πi, ρi) 6= ⊥ and
P (πi, ρi)(πi+1) > 0. We say that the combined probability
of (π, ρ) is

∏n−1
i=0 P (πi, ρi)(πi+1). The definition of finite

traces carries over to infinite traces.
A Markov chain is a Markov decision process (MDP)

in which A = {·}. A Markov chain introduces the usual
probability measure over sets of infinite traces.

A policy for an MDP is a function f : S∗ → P(A) such
that for all s0 . . . sn ∈ S∗, we have f(s0 . . . sn)(a) = 0 for
all actions a such that P (sn, a) = ⊥. A policy induces an
infinite-state Markov chain C′ = (S′, {·},Σ, P ′, L′, s0)
with S′ = S∗, L′(s0 . . . sn) = L(sn) for all
s0 . . . sn ∈ S′, and for all s0 . . . sn, u0 . . . um ∈ S′,
we have P ′(s0 . . . sn, ·)(u0 . . . um) =

∑
a∈A P (sn, a)(um) ·

f(s0 . . . sn)(a) if u0 . . . um−1 = s0 . . . sn, and
P ′(s0 . . . sn, ·)(u0 . . . um) = 0 otherwise.

Policies for MDPs can be positional or finite-state. For
a positional policy, for all t = t0 . . . tn ∈ S∗ and t′ =
t′0 . . . t

′
m ∈ S∗, we have that f(t) = f(t′) if tn = t′m.

For a finite-state policy, there exists a finite-state automaton
F = (Q,S, δ, q0) with a finite set of states Q, q0 ∈ Q, and
δ : Q×S → Q such that there is a function f ′ : Q→ P(A)
such that for all t = t0 . . . tn ∈ S∗, we have that f(t) =
f ′(q) for q = δ(. . . δ(δ(q0, t0), t1), . . . , tn).

In literature, MDPs often also have a reward function. As
in some other work on ω-regular MDP control (see, e.g.,
[14]), we do not need it in this paper and have thus omitted
the reward function in the MDP definition. An MDP can be
represented graphically by drawing the states as nodes in a
graph, marking the initial state and letting the transitions be
represented by groups of edges, which are in turn labeled by
their transition probabilities. The groups of edges are labeled
by their actions. Disallowed actions, i.e., for which we have
P (s, a) = ⊥, are not shown.

b) Parity automata and ω-regular specifications: Given
an alphabet Σ, an ω-regular specification is a subset of Σω

that is representable as the language of a deterministic parity
word automaton. These automata are defined as tuples A =
(Q,Σ, δ, q0, C), where Q is a finite set of states, Σ is an
alphabet, δ : Q × Σ → Q is the transition function of A,
q0 ∈ Q is the initial state of the automaton, and C : Q→ N
is the coloring function. Given a word w = w0w1 . . . ∈ Σω ,
A induces a trace t = t0t1 . . . ∈ Qω such that for all i ∈ N,
we have ti+1 = δ(ti, wi). Let inf be a function that maps an
infinite sequence onto the elements of the sequence that occur
infinitely often in it. A trace t of A is called accepting if
max(inf(c(t0)c(t1)c(t2) . . .)) is even. An automaton is said
to accept a word w if there exists an accepting trace for it.
The set of all words accepted by the automaton is called its
language.

c) Reachability MDPs: A reachability MDP M =
(S,A,Σ, P, L, s0, g) consists of the usual MDP elements

plus a function g : S → {0, 1}, which assigns to every
state s ∈ S either 0 or 1 depending on whether it is a goal
state or not. A policy f for M induces for every state s a
value v(s) ∈ [0, 1] that denotes the probability measure of
the traces starting in s and eventually visiting a state s′ ∈ S
with g(s′) = 1 when executing the policy, i.e., in the Markov
chain induced by M and f starting from state s. A policy
that maximizes the values from all starting states is called
optimal and it is known that in reachability MDPs, positional
optimal policies exist [6]. The values of the states induced
by an optimal policy are also called the state values of the
reachability MDP. These can be computed either by policy
iteration or value iteration algorithms [16]. In the latter case,
a sequence of vectors ~x1, ~x2, . . . ∈ [0, 1]|S| is computed
such that for every i ∈ N, xi+1 is closer to the vector of
state values than xi. Value iteration is normally programmed
to abort computation if at some point, ||xi+1 − xi|| ≤ ε
for some value ε and some norm || · ||. When starting with
~x0 being equivalent to g, the approximations are all under-
approximations of the actual state values (modulo rounding
errors).

IV. PROBLEM DEFINITION

Definition 1 (Parity MDP): The product of an MDP
M = (S,A,Σ, P, L, s0) and a parity word automaton A =
(Q,Σ, δ, q0, C) is an MDPM′ = (S′, A,Σ, P ′, C ′, s′0) with
a coloring function instead of a labeling function where:

S′ = S ×Q,
s′0 = (s0, q0),

C ′(s, q) = C(q) for all (s, q) ∈ S′, and

P ′((s, q), a)((s′, q′)) =

{
P ′(s, a)(s′) if q′ = δ(q, L(s′))

0 else

for all (s, q), (s′, q′) ∈ S′, a ∈ A.

An infinite trace t0t1 . . . ∈ S′ω in M′ is said to be
accepting if the highest number occurring infinitely often
in the sequence C ′(t0)C ′(t1) . . . is even.

A parity MDP captures a control problem in a probabilistic
environment. Let us consider an example.

Example 1: As a first example, we consider a simple robot
with unicycle dynamics in a two-dimensional gridded world.
The workspace, which we depict in Figure 1, has 70×40
cells and the robot always has one out of eight possible
current directions. The speed of the robot is constant, and
it needs to avoid hitting the workspace boundaries or the
static obstacles. In order to model the scenario as an MDP,
we use a semantics with a fixed time step. In every time
step, we shift the current cell into the current direction of
travel by 2 cells, extend the resulting rectangle by 0.1 into
every direction to account for imprecise motion, and then
assign transition probabilities that are proportional to the
overlap of the rectangle with the world cells. There is an
additional special error state in the MDP that represents
crashes. In every step, the policy can decide to increase
or decrease the current direction by 1 tick (out of 8). This

Fig. 1. Workspace for the single-robot example.

turning operation may fail with a probability of 0.2, and in
the case of failure, the direction of the robot is not changed.
The MDP has 70·40·8+1 = 22401 states, 67201 state/action
pairs, and 681591 edges, i.e., pairs (s, a, s′) in the MDP
M = (S,A,Σ, P, L, s0) with P (s, a)(s′) > 0.

The specification for the robot is represented as a 15 state
parity automaton. It encodes four requirements:
• The left-most marked part of the workspace should be

visited infinitely often,
• the right-most marked part of the workspace should be

visited infinitely often,
• either the top marked part of the workspace must be

visited only finitely often, or the bottom one, or both,
and

• infinitely often, the regions in the middle shall be visited
strictly in the middle-left-right order.

The product MDP of the MDP and the parity automaton has
366015 states, out of which 2196 are unreachable (and can
be removed).

A classical problem over MDPs with ω-regular opti-
mization criteria is to find a policy that maximizes the
probability that a trace is accepting. In the product MDP
from Example 1, there is however no policy that raises
this probability above 0. This follows from the fact that no
matter what the policy does, with a probability of at least
0.2, the robot continues to travel into the current direction.
By the limited size of the workspace, colliding with the
workspace boundaries takes at most 35 steps, and thus,
a very conservative lower bound on the probability for a
crash within 35 steps is (0.2)35 at every step of the MDPs
execution. In the long run, the collision is thus unavoidable
with probability 1.

Despite the fact that the parity MDP does not admit a good
policy in the traditional sense, we may want to compute a
policy that works towards the satisfaction of the specification
as long as possible while avoiding unnecessary risks. We
formalize this objective in the following definition:

Definition 2: Let M = (S,A,Σ, P, C, s0) be a parity
MDP. We say that some control policy f : S∗ → A has a
risk-averseness probability p ∈ [0, 1] if there exist labelings
l : S∗ → N and l′ : S∗ → B and a Markov chain C′ induced
by M and f with the following properties:

• There exists some number k ∈ N such that for all
t0t1t2 . . . ∈ Sω , there are at most k many indices i ∈ N
for which we have l(t0 . . . ti) > l(t0 . . . titi+1).

• For all t0t1 . . . tn ∈ S∗, we have that l(t0 . . . tn) is
even, and l′(t0 . . . tn) = true implies that C(tn) ≥
l(t0 . . . tn) and that C(tn) is even.

• For all t0t1 . . . tn ∈ S∗, if C(tn) is odd, then
l(t0 . . . tn) > C(tn).

• For all t = t0t1 . . . tn ∈ S∗ with either (a) l′(t) = true
or (b) t = s0, the probability measure in C′ to reach
some state t t′0 . . . t

′
m ∈ S∗ with l′(t t′0 . . . t

′
m) = true

from state t is at least p.

The labelings l and l′ in Definition 2 augment a policy
with the information what goal color the policy is trying
to reach and when a goal has been reached. A goal must
always be even-colored, but along different traces, different
goals are allowed. From every goal state, the next goal state
must be reached with probability at least p. Together with
the first three requirements in Definition 2, this implements
the parity acceptance condition, as they together state that
the goal color can only decrease finitely often along a trace.
The parity acceptance condition does not need to be fulfilled
with strictly positive probability in the long run, however,
as in between two visits to goal states, the policy may
fail with probability (1 − p). Thus, we only require the
parity acceptance condition to hold on those paths on which
goal states are reached infinitely often (which may have
probability measure 0). The strategy can choose goal states
in a way that maximizes the probability of reaching the
respective next goal state. Thus, the higher the value of p
is, the more averse to the risk to miss the next goal the
control policy needs to be.

The reader may wonder why mentioning the labeling
function l′ is actually necessary in Definition 2, as one
could simply implicitly set l′(t0 . . . tn) = true whenever
C(tn) ≥ l(t0 . . . tn) and C(tn) is even. However, this change
often requires the policy to be able to reach the next goal
from state tn with probability p in the induced Markov
chain without raising the target goal color l(·), which is not
always possible in a p-risk-averse strategy. Figure 2 shows an
example in which increasing the color of state q1 to 2 (which
is even) would then reduce the maximally implementable
risk-averseness level from 0.68 to 0.64. As changing an
odd color to an even one only makes the parity acceptance
condition easier to satisfy, this is a very unintuitive property.
To avoid it, we thus chose to make the labeling function l′

explicit.

Using Definition 2, we can now state the main problem
considered in this paper:

Definition 3 (Optimal risk-averse policy synthesis):
Given a parity MDP, the optimal risk-averse policy
synthesis is to find the highest value p such that a policy
for the MDP with risk-averseness level p exists, and to find
such a policy.

0

1q1:1

1

1 2

0.2

0.8
a

0.8

0.2a

0.2

0.8a

1.0

1.0

Fig. 2. An MDP in which for risk-averseness level p = 0.68, state q1 is
not winning, but the state is reachable on the (unique) p-risk-averse policy.
All states are labeled by their colors.

3

0

1

0.9

0.1

a

1.0

0.7

0.3

a

0

1

0.
8

0.
2

b

1.
0

0.
8

0.
2

a

0

1

0.7
0.3

c

1.0

0.9

0.1

a

0

1
1.00.4

0.6
a

1

2

0.6

0.4
d

1.0

1.0

Fig. 3. An example parity MDP that admits a 0.54-risk-averse finite-
memory policy, but no such positional policy. All states are labeled by their
colors.

V. COMPUTING RISK-AVERSE POLICIES

In this section, we describe an algorithm to compute risk-
averse policies in parity MDPs. The algorithm produces
finite-memory strategies that are not necessarily positional.
This may appear to be a flaw of the algorithm, as memoryless
policies suffice for maximizing the probability for a trace to
satisfy a parity objective in MDPs [13]. However, optimal
risk-averse strategies do require memory in general, which
we show by means of an example.

Example 2: Figure 3 shows a parity MDP. It has four
colors, and all states with color 1 are sink states, i.e., from
which no possible goal state can be reached. The center state
has the highest and odd color, so it may only be visited
finitely often. Any policy cannot avoid either ending up
in a sink state or visiting the middle state at least every
second step, unless eventually action d is chosen by the
policy. If the policy chooses action a in the initial state,
and then immediately chooses d, it reaches the state with
color 2 with a probability of 0.6 · 0.6 = 0.36. The resulting
policy is thus 0.36-risk averse. However, there exists a better
policy: when the state with color 3 is visited for the first
time, action a should be taken, then action b, c, and finally
action d. By declaring all color 0 states to be goal states,

the resulting policy then has a risk averseness level of
min(0.6 · 0.9, 0.7 · 0.8, 0.8 · 0.7, 0.9 · 0.6) = 0.54. Thus,
the best next action in the state with color 3 depends on
the history of the trace. While this example only shows that
memory is needed in optimally risk-averse policies, the fact
that finite memory suffices follows from the correctness of
our algorithm described below.

A. p-risk-averse policy computation

Let us assume that p is fixed and that we want to compute
a p-risk-averse MDP control policy. The algorithm that we
describe in this section computes the set of states from
which a p-risk-averse policy exists. We call such states
winning. The policies computed sometimes make use of
non-winning states, which may be counter-intuitive at first.
Figure 2 shows an example MDP where this is the case:
from state q1, the probability of reaching a next goal state
is only 0.2, but the optimal 0.68-risk-averse policy from the
initial state requires that even after reaching q1, state q2 is
labeled as being a goal state if it is subsequently reached.

Whenever a goal state is reached, the only information
about the history of the trace that may need to be retained
is (1) how often the goal color may still be decreased before
the limit of k is reached, and (2) what the current goal
color is. This follows from the fact that the computation
of probabilities is reset at goal states. Our algorithm makes
use of this fact by planning policies from goal state to goal
state(s). It iterates over all possible value combinations for
the current goal color and the number of remaining goal
color reductions.

Definition 4: We say that a state q is (k, c)-winning (for
some fixed risk averseness level p) if there exists a p-risk-
averse policy f from q as initial state with labels l and l′

such that l(ε) = c and along all traces of the policy, goal
colors are never decreased more than k times. We call such
policies p-(k, c)-risk-averse.

Proposition 1: Some parity MDP admits a p-risk-averse
policy if the initial state is (k, c)-winning for some values of
c ∈ N and k ∈ N.

Proof: Follows directly from Def. 2 and Def. 4.
This proposition allows us to frame the search for a
p-risk-averse policy as an iterative process, which we base
on the following lemma. Let cmaxEven be the least even
upper bound on the colors occurring in the parity MDP.

Lemma 1: A state q is winning for some values of (k, c)
with c ≤ cmaxEven and even c if and only if there exists a
policy such that, with probability p, eventually either:
• some even-colored state q′ is visited that is winning

for (k − 1, 0), or
• some even-colored state q′ with C(q′) = c′ for c′ ≥ c

is visited that is winning for (k, c′) while no odd color
≥ c′ is visited along the way to q′.
Proof: We prove the claim by induction over (k, c) with

even c. The order of induction that we use is lexicographic
in (k,−1 · c).

Induction basis: For the case (k, c) = (0, cmaxEven), the
only way for a state to be (k, c)-winning is for a policy

from that state to exist such that, with probability at least
p, a state is eventually visited that has color c and is (k, c)-
winning again. This is exactly the only condition from the
claim that is applicable in this case.

Induction step: (⇒) Let f ′ be a policy from q such that,
on every trace of the policy, the goal colors decrease at most
k times, and let l(ε) = c for the labelings (l, l′) assigned
to the policy. The probability to reach the next goal must
be at least p in order for the state to be (k, c)-winning. A
goal can either have a color greater than or equal to c or a
color less than c. In the latter case, the goal state must be
(k′, c′)-winning for some c′ and some k′ < k. As all such
states are also (k − 1, 0)-winning (by definition), this case
is covered by cases in the claim. If a goal with color c′ is
reached, then either no state with color ≥ c is visited along
the way and c′ = c, or alternatively c′ > c and no state with
color ≥ c′ is visited along the way. Both cases are covered
by the case list in the claim.

(⇐) Now let q be a state from which a policy to visit
some goal state q′ with probability p exists. State q′ may be
a (k, c)-winning state, but does not have to be one. If, on
the way to q′, a state with an odd color c′ > c is visited,
this requires that the label function l′ of the policy has to
be greater than c′ on the way from q to q′. So for the
trace to count towards the probability mass of p, state q′

needs to be either (k, c′ + x)-winning (for even x ≥ 2) or
alternatively (k−1, c′)-winning. Since the set of (k, c′+x)-
winning states is contained in the (k, c′ + 2)-winning states
and the (k−1, c′)-winning states are a subset of the (k−1, 0)-
winning states (by definition), we can assume, without loss
of generality, that a (k, c′+2)-winning or (k−1, 0)-winning
state is visited.

We construct the p-risk averse policy f with associated
labels (l, l′) that prove that q is (k, c)-winning as follows: we
use the policy with the properties from the claim, and switch
to the policies that exist by the inductive hypothesis for
the states that are (k − 1, 0)-winning or (k, c′ + 2)-winning
when the second condition from the claim is used. When
another (k, c)-winning state is visited, we instead continue
with a policy constructed from q′ in the same way as for q.
The fact that this composition of the policies yields a correct
(k, c)-winning policy follows by induction: at every policy
prefix t with l′(t) = true or t = ε such that no transition to
a (k−1, 0)-winning or (k, c′+ 2)-winning has yet occurred,
we know that the policy reaches some next goal state with
probability at least p. For the other goal states, the correctness
follows from the inductive hypothesis and the fact that after
transitions to (k − 1, 0)-winning or (k, c′ + 2)-winning goal
states, the existing p-risk-averse policies can be used from
there. If no (k − 1, 0)-winning or (k, c′ + 2)-winning goal
state is reached or until such a goal state is reached, the
construction ensures that the goal states otherwise reached
are (k, c)-winning, and no odd color higher than c is reached
in between two visits to (k, c)-winning goal states that
are not (k − 1, 0)-winning or (k, c′ + 2)-winning. As this
property holds (by induction over the length of the policy
prefix) for all visits to goal states, the claim follows.

The characterization of (k, c)-winning states in Lemma 1
allows us to compute the (k, c)-winning states using tradi-
tional MDP policy computation algorithms.

Lemma 2: Let M = (S,A,Σ, P, C, s0) be a parity MDP,
Sk,c ⊆ S be the (k, c)-winning states, Sk,c+2, . . . , Sk,cmaxEven

be the (k, c + 2)-winning to (k, cmaxEven)-winnings states,
and Sk−1,0 be the states that are (k − 1, 0)-winning (all for
some value of p). We can compute a reachability MDP M′
with |S| × |{c, c + 2, . . . , cmaxEven}| many states in which
the value of any state (q, c) is ≥ p if and only if q is a
(k, c)-winning state.

Proof: We can construct M′ = (S′, A,Σ, P ′, g, s0) as
follows:

S′ = S × {c, c+ 2, . . . , cmaxEven}

P ((s, c̃), a)((s′, c̃′)) =

P (s, a)(s′) if C(s′) is odd and
c̃′ = max(c̃, C(s′))

P (s, a)(s′) if C(s′) is even and
c̃′ = c̃

0 else

for all(s, c̃), (s′, c̃′) ∈ S′, a ∈ A

g((s, c̃)) =

1 if c̃ = c, s ∈ Sk,c, C(s) ≥ c̃, C(s) is even
1 if s ∈ Sk,c̃ or s ∈ Sk−1,0, and C(s) is even
0 else

for all(s, c̃) ∈ S′

The MDP has the stated properties by the facts that (1) it
keeps track of the highest color visited along a trace so far,
and (2) it induces a payoff of 1 exactly for the states that
are possible goal states.

Optimal policy computation for a reachability MDP can
be performed by standard policy iteration or value iteration
algorithms. Until now, the definition of the reachability MDP
in Lemma 2 is somewhat recursive: in order to determine
which states are (k, c)-winning, we have to already know the
(k, c)-winning states. The characterization from Lemma 1
however allows us to compute it with the approach from
Lemma 2. What we are actually searching for is the largest
set of states Sk ,c that the construction from Lemma 2 maps to
itself; any state set that is smaller misses some states that are
(k, c)-winning by the characterization from Lemma 1, and
by the same lemma, any set that is larger contains some state
that is not (k, c)-winning. So computing the greatest fixpoint
over the states Qk ,c allows to find the (k, c)-winning states,
provided that the (k, c+2)-winning to (k, cmaxEven)-winning
and (k − 1, 0)-winning states are known. By iterating over
the possible values of k and c, we can thus compute the sets
Sk,c in a bottom-up fashion, as shown in Algorithm 1.

The algorithm calls the external function COMPUTESTAT-
EVALUES to solve the reachability MDPs obtained by the
construction in Lemma 2, which can be a value or policy
iteration algorithm. Extending Algorithm 1 to also compute
a policy is simple: without loss of generality, optimal reach-
ability MDP policies are positional, and we can stitch these

Algorithm 1 Algorithm to compute if a parity MDP M
admits a p-risk-averse policy.

1: function COMPUTERAPOLICY(M, p)
2: Sk−1 ← ∅
3: while fixed point of Sk has not been reached do
4: for c ∈ {cmaxEven , cmaxEven − 2, . . . , 0} do
5: Sk[c]← S
6: while fixed point of Sk[c] has not been

reached do
7: M′ = CONSTRUCTIONFROMLEMMA2(c,
Sk[c], . . . , Sk[cmaxEven], Sk−1)

8: V ← COMPUTESTATEVALUES(M′)
9: Sk[c]← {s ∈ S | V ((s, c)) ≥ p}

10: Sk−1 ← Sk[0]

11: return s0 ∈ Sk−1

policies together. The resulting policy always maintains a
pair (k, c) and executes the positional policy computed by
COMPUTESTATEVALUES in the respective iteration of the
inner WHILE loop until a state in Sk[c+2] or Sk−1 is reached.
In such cases, the policy then changes its pair to (k, c+2) or
(k−1, 0) and continuous with the respective positional policy
computed by COMPUTESTATEVALUES. Since the algorithm
performs only a finite number of iterations over k and c, the
resulting policy is finite-state.

Remark 1: To speed up Algorithm 1, we can simplify
the reachability MDP construction of Lemma 2: instead of
keeping track of the maximum odd color seen along a trace
so far (in excess of c), we can alternatively keep track of
whether an odd color greater than c has been seen so far,
and only consider switching to a (k − 1, 0)-winning goal
state in that case. While the number of loop iterations of
the algorithm until all positions that admit a p-risk-averse
policy has been found can be higher with this modification,
the reachability MDPs are typically smaller (as they have a
size of at most 2 · |S| then), which speeds up the value or
policy iteration process for solving them.

B. Maximally risk-averse policy computation

In the previous subsection, we gave an algorithm to obtain
p-risk-averse policies for a given p whenever they exist. In
order to compute optimally risk-averse policies, we can apply
a bisection search, which is the continuous-domain version
of binary search, to find the highest value p such that a p-
risk-averse policy exists.

Since p is a continuous value, this process has no natural
termination point, however. For all practical means, it makes
sense to define a cut-off value for the search such that if
the difference between known upper and lower bounds on
the risk-averseness level of the optimal policy is below the
cut-off, the search process terminates with the best policy
found until then. Defining a cut-off point is also motivated
by practical means: most MDP solving algorithms run with
a bounded precision, which leads to rounding errors. This
makes it difficult to solve the problem given in Definition 3

in the strict sense.
However, under the assumption that the probabilities com-

puted by function COMPUTESTATEVALUES are exact, Algo-
rithm 1 can be modified in order to allow finding a maximally
risk-averse policy. For this, line 9 of the algorithm needs to be
replaced by Sk[c]← {s ∈ S | V ((s, c)) > p}. The algorithm
then checks if a p′-risk-averse policy for p′ > p exists.
Furthermore, after every call to COMPUTESTATEVALUES,
we let the algorithm also compute lb := min{V (s) | s ∈
S, V ((s, c)) > p}. The least of these lb values represents a
lower bound on the p-risk averseness of the policy actually
computed. Let this value be named lbmin .

We can now perform an iterative search process for the
optimally risk-averse policy as follows: starting with p =
0, we search for a p′-risk-averse policy for p′ > p using
the modified version of Algorithm 1. If we find one, we
update p to lbmin and continue with the search. Otherwise,
the previously found policy is an optimally risk-averse policy.

To see why this process solves the problem, note that
whenever p is increased, at least one state is removed
from Sk[c] in some iteration of the outermost while loop.
While the state may be added to Sk[c] later in the process,
increasing the value of p can only push states to be found
later in the search process of Algorithm 1. When delaying
the addition of states to Sk[c], at some point, there will be
one execution of the outer while loop of Algorithm 1 in
which no additional states are found. Since the algorithm
will terminate without finding a policy in this case, by the
correctness of the algorithm, we can terminate the search at
that point, and the policy found last is optimally risk-averse.

VI. EXPERIMENTS

We implemented the p-risk-averse policy computation
approach in a prototype tool, called ramps, written in C++ .
The tool uses the simplification from Remark 1 and employs
value iteration to compute policies for the reachability MDPs
analyzed in Algorithm 1. Bisection search with a cut-off
value of 0.01 (i.e., 1 percent) is used to compute close-to-
optimal risk-averse policies. We configured the value itera-
tion processes to terminate when the sum of updates to the
state values falls below 0.05. Value iteration is performed in a
parallelized way using the openmp library. All computation
times reported in the following were taken on an Intel i5-
4200U computer with 1.60 GHz clock rate and 4GB of RAM,
utilizing 2 physical processor cores, each with two virtual
hyper-threaded cores used for value iteration. The ramps
tool is available under the GPLv3 open-source license from
https://github.com/progirep/ramps.

A. Single-robot control

In the first experiment, we consider the setting from Ex-
ample 1. The ramps tool needs 30 minutes and 11 seconds
(95m57s of single-processor time) to compute a 0.890689-
risk-averse policy with 388329 states. A simulation of it,
available as a video on https://progirep.github.
io/ramps, shows that the robot performs the task encoded
into the parity automaton until it crashes. Visiting the regions

in the middle in the correct order seems to be relatively easy
for the policy. In order to reach the regions on the left and on
the right in a risk-averse way, the robot often circles many
times before it has the right approach angle and position to
travel through one of the gaps next to the static obstacles.

B. Multi-robot control

As a second example, we considered a multi-robot control
scenario, which we depict in Figure 4. This time, we have
two robots without complex dynamics: in each step, they can
either move left, right, up or down by one cell, or choose
not to move at all. If a robot chooses to move, there is an 8
percent chance that it moves into a different direction than
chosen (i.e., 8

3 percent per remaining direction). As in the
first example, crashing into an obstacle or into the workspace
boundaries leads to a transition to an error state in the MDP.
A robot crashing into the other robot also leads to the error
state.

The robots can also carry an item. For this, they have
to jointly perform a pickup operation while standing left and
right, respectively, of the pickup region r1. While they main-
tain a horizontal distance of 2, they can continue carrying the
item. The item is lost if there is a deviation in the distance. At
region r2, they can also drop the item. They cannot crash into
each other while carrying an item (as it acts like a spacer).
The MDP has 12294 states, 307304 state/action pairs, and
2798040 edges. The numbers of state/action pairs and edges
are higher than in the first scenario, as each of the two robots
has five choices of actions in each step.

The specification is represented as a 5-state parity au-
tomaton that encodes that (1) infinitely many items shall be
delivered from r1 to r2, (2) infinitely often, robot one and two
shall visit the top left and top right regions, respectively, and
(3) the pickup and dropping regions should never be visited
by any robot.

Computing a 0.599408-risk-averse policy takes 146.4
seconds and the simulation (available as a video on
https://progirep.github.io/ramps) shows that
again, the policy lets the robots perform their task until at
least one of them collides. In case the item is lost during
delivery, the two robots just try again immediately. The
generated policy has 61509 states.

VII. CONCLUSION

In this paper, we showed how to compute risk-averse
policies. A system governed by such a policy works towards
the satisfaction of some given ω-regular specification
even in probabilistic environments in which almost sure
non-satisfaction of the specification cannot be avoided in the
long run. Instead of just resigning, because the probability
mass of the runs of a Markov decision process that satisfy
the specification can only be 0, a p-risk averse policy always
reaches the respective next goal state with a probability of
at least p (from the previous goal state). The definition of
the problem ensures that the goal states are chosen in a way
that faithfully captures the satisfaction of the specification.
We assumed that the specification is given as a deterministic

r1

r2

Fig. 4. Workspace for the multi-robot example.

parity automaton, but structured logics such as linear time
logic (LTL) could also be used, as translations from LTL to
parity automata are known [17].

We intent to extend the approach to the synthesis of
strategies in stochastic two-player games in future work.
Also, we will explore how to incorporate additional op-
timization criteria such as mean-average cost into policy
generation and if reinforcement learning techniques can be
used to successively approximate optimal policies during
policy execution.

ACKNOWLEDGEMENTS

R. Ehlers was supported by the Institutional Strategy of the
University of Bremen, funded by the German Excellence Ini-
tiative. S. Moarref and U. Topcu were partially supported by
awards AFRL FA8650-15-C-2546, ONR N000141310778,
ARO W911NF -15-1-0592, NSF 1550212, and DARPA
W911NF -16-1-0001.

REFERENCES

[1] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of
Markov decision processes with linear temporal logic constraints,”
IEEE Trans. Aut. Control, vol. 59, pp. 1244–1257, 2014.

[2] M. Lahijanian, S. B. Andersson, and C. Belta, “Temporal logic motion
planning and control with probabilistic satisfaction guarantees,” IEEE
Trans. Robot., vol. 28, no. 2, pp. 396–409, 2012.

[3] S. Temizer, M. J. Kochenderfer, L. P. Kaelbling, T. Lozano-Pérez,
and J. K. Kuchar, “Collision avoidance for unmanned aircraft using
Markov decision processes,” in AIAA Guidance, Navigation, and
Control Conference, 2010.

[4] R. Alterovitz, T. Siméon, and K. Y. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with Markov motion
uncertainty.” in RSS, vol. 3, 2007, pp. 233–241.

[5] B. Defourny, D. Ernst, and L. Wehenkel, “Risk-aware decision making
and dynamic programming,” in NIPS 2008 Workshop on Model
Uncertainty and Risk in RL, 2008.

[6] A. Condon, “The complexity of stochastic games,” Information and
Computation, vol. 96, no. 2, pp. 203–224, 1992.

[7] L. De Alfaro, T. A. Henzinger, and O. Kupferman, “Concurrent
reachability games,” in FOCS. IEEE, 1998, pp. 564–575.

[8] L. De Alfaro and T. A. Henzinger, “Concurrent omega-regular games,”
in 15th Annual IEEE Symposium on Logic in Computer Science
(LICS). IEEE, 2000, pp. 141–154.

[9] L. de Alfaro and R. Majumdar, “Quantitative solution of omega-regular
games,” in STOC. ACM, 2001, pp. 675–683.

[10] K. Chatterjee, L. de Alfaro, and T. A. Henzinger, “The complexity of
stochastic Rabin and Streett games,” in ICALP, 2005, pp. 878–890.

[11] K. Chatterjee, L. De Alfaro, and T. A. Henzinger, “The complexity of
quantitative concurrent parity games,” in 17th ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2006, pp. 678–687.

[12] K. Chatterjee and T. A. Henzinger, “A survey of stochastic ω-regular
games,” Journal of Computer and System Sciences, vol. 78, no. 2, pp.
394–413, 2012.

[13] K. Chatterjee, M. Jurdziński, and T. A. Henzinger, “Quantitative
stochastic parity games,” in SODA, 2004, pp. 121–130.

[14] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “LTL control in
uncertain environments with probabilistic satisfaction guarantees,” in
18th IFAC World Congress, 2011.

[15] M. Svorenova, I. Cerna, and C. Belta, “Optimal control of MDPs with
temporal logic constraints,” in 52nd IEEE Conference on Decision and
Control (CDC), 2013, pp. 3938–3943.

[16] O. Sigaud and O. Buffet, Markov Decision Processes in Artificial
Intelligence. Wiley-IEEE Press, 2010.

[17] N. Piterman, “From nondeterministic Büchi and Streett automata to
deterministic parity automata,” Logical Methods in Computer Science,

vol. 3, no. 3, 2007.

