
How Hard is Finding Shortest Counter-Example
Lassos in Model Checking??

Rüdiger Ehlers

Clausthal University of Technology, Clausthal-Zellerfeld, Germany
ruediger.ehlers@tu-clausthal.de

Abstract. Modern model checkers help system engineers to pinpoint
the reason for the faulty behavior of a system by providing counter-
example traces. For finite-state systems and ω-regular specifications, they
come in the form of lassos. Lassos that are unnecessarily long should be
avoided, as they make finding the cause for an error in a trace harder.

We give the first thorough characterization of the computational com-
plexity of finding the shortest and approximately shortest counter-exam-
ple lassos in model checking for the full class of ω-regular specifications.
We show how to build (potentially exponentially larger) tight automata
for arbitrary ω-regular specifications, which can be used to reduce find-
ing shortest counter-example lassos for some finite-state system to find-
ing a shortest accepting lasso in a (product) Büchi automaton. We then
show that even approximating the size of the shortest counter-example
lasso is an NP-hard problem for any polynomial approximation function,
which demonstrates the hardness of obtaining short counter-examples in
practical model checking. Minimizing only the length of the lasso cycle is
however possible in polynomial time for a fixed but arbitrary upper limit
on the size of strongly connected components in specification automata.

1 Introduction

With model checking, we can exhaustively test if a reactive system (or a model
of it) satisfies a given specification. A key feature of most model checking tools
is that they provide a counter-example whenever this is not the case. Counter-
examples are helpful for the system engineer to understand the reason for non-
satisfaction and to find out whether the model is erroneous and hence needs to
be fixed, or whether the design itself has an error, which necessitates refining
the design. For safety properties, such a counter-example can be a finite trace,
where the violation of the property becomes apparent with the last state of the
trace. For a specification outside of the set of safety properties such as a liveness
property, a finite trace cannot show the absence of a specification violation in
the model. In this case, an infinite trace is needed, and if and only if a finite-
state system does not satisfy an ω-regular specification, there is a lasso-shaped

? This work was supported by the German Science Foundation (DFG) under Grant
No. 322591867. It was inspired by discussions at Dagstuhl seminar 19081.

counter-example that can be presented to the engineer. Such lassos consist of
a handle that shows how the system initially evolves, followed by a cycle that
shows repetitive behavior that the system can follow indefinitely long. The trace
consisting of following the handle once and cycle infinitely often is then the
counter-example.

To fulfill the promise of helping the system engineer with revising the model
of the design, a counter-example needs to be understandable. While a full formal-
ization of this requirement is difficult, it is commonly agreed on that counter-
examples should be short, as deriving the core reason for the violation of overly
long counter-examples is cumbersome. The length of counter-example lassos can
be defined both over the lengths of the handle and the cycle, but the most com-
mon definition is the sum of these. Finding a shortest counter-example lasso
in a Büchi automaton that models the intersection between the complement of
the specification and the traces that the system permits is computationally easy
as polynomial-time algorithms are known for this task [18, 11]. The intersection
Büchi automaton in this context is built from a finite-state machine descrip-
tion of the system and a Büchi automaton representation of the specification.
This means that the syntactic structure of the latter influences the length of the
counter-example lassos in the product, and hence finding a shortest lasso in it
does not mean that the lasso’s projection on the system FSM yields a shortest
lasso in the FSM alone. Hence, following this approach can lead to unnecessarily
long counter-examples.

When the specification of the system is given as a linear temporal logic (LTL)
property, this problem can however be avoided [17]. The translation from LTL
to a Büchi automaton can be made tight, i.e., such that it ensures that lassos
in the finite-state machine system description along which a specification is vio-
lated give rise to lassos in the product automaton of the same size. In this way,
shortest counter-example lassos are present in the product automaton. The con-
struction is however bound to LTL and algorithms that post-process specifica-
tion Büchi automata to reduce their size or improve their amenability for model
checking [19] can break tightness. Since such post-processing procedures have
been shown to be important for good model checking performance, computing
shortest counter-example lassos for LTL specifications remains practically more
difficult than computing any counter-example. Even more important, novel spec-
ification logics such as linear dynamic logic (LDL, [4]) and property specification
logic (PSL,[7]) have recently been proposed to achieve full ω-regular expressiv-
ity and to support the industrial adoption of model checking techniques. The
results from Schuppan and Biere [17] do not carry over to these logics, hence
leaving a gap for the question of how difficult the problem of obtaining shortest
counter-example lassos for these logics and ω-regular specifications in general is.

In this paper, we revisit the computational hardness of the problem of com-
puting shortest counter-example lassos for arbitrary ω-regular specifications. We
start by showing that by applying two constructions by Calbrix et al. [2] and
Farzah et al. [9] in succession, we can translate an arbitrary Büchi automaton
into an equivalent tight automaton. The construction leads to an exponential

blow-up while already for the safety case, the lower bound identified by Kupfer-
man and Vardi [14] is also exponential. While a tight Büchi automaton can be
used to find a shortest counter-example lasso, the automaton blow-up leads to
the question if there is a more efficient way to compute shortest counter-example
lassos with specification automata that are not tight. To study this question, we
define the problem of finding a short component lasso in a Büchi automaton that
is the product of a specification automaton and a finite-state machine. While it
is relatively easy to show that the problem is NP-complete, we mainly examine
the approximation hardness of the problem, as approximately shortest counter-
example lassos may also suffice in practical applications. Unfortunately, it turns
out that the problem is also NP-hard to approximate within any polynomial
approximation function. On the positive side, we give a polynomial-time con-
struction for minimizing the lassos cycle length for specification Büchi automata
with small strongly connected components (of a fixed maximal size), which are
common when model checking against liveness properties.

The hardness results that we present provide an a-posteriori justification for
heuristic approaches to finding short counter-example lassos in model checking.

1.1 Related Work

Minimizing the size of counter-example traces or lassos is a classical problem
in the model checking literature. Standard depth-first search Büchi automaton
language emptiness checking algorithms commonly implemented in explicit-state
model checkers such as spin [12] are not guaranteed to yield shortest counter-
examples. A simple improvement is to minimize the lasso cycle length in the
product automaton between the system and the specification automaton, which
can be done in time polynomial in the sizes of the automata. Gastin et al. [10]
give an approach to find shortest counter-examples in explicit-state model check-
ing without increasing memory usage substantially. Edelkamp et al. [5] give an
approach for doing so in explicit-state model checking when using external mem-
ory for storing states. In symbolic model checking using binary decision diagrams
(BDDs), lasso cycle length minimization comes as a side effect of the typically im-
plemented algorithms. Clarke et al. [3] showed that adding fairness requirements
to the lasso to be found (such as in the acceptance condition of generalized Büchi
automata) makes the problem of finding shortest accepting lassos NP-hard, even
in the product automata used in model checking.

All approaches mentioned so far can however still compute unnecessarily long
counter-examples as they search for short counter-example lassos in the product
automaton. As an alternative, Schuppan and Biere [17] showed how to compute
tight specification automata for linear time temporal logic (LTL). Such specifi-
cation automata ensure that shortest counter-example lassos in the finite-state
machine modeling the system to be tested induce shortest lassos in the product
automaton, enabling the application of an approach to obtain short accepting
lassos in Büchi automata [18, 11, 10] to compute shortest counter-example las-
sos. Post-processing such specification automata by simulation-based automaton
minimization [8], as usually done in practical model checking, can break this

property, though, requiring the specification automata to remain unaltered after
their construction.

For the safety fragment of the ω-regular specifications, Kupferman and Vardi
gave a construction to build tight automata [14]. Starting with a non-determi-
nistic Büchi automaton, their construction leads to an exponential blowup in
the specification automaton size, which they show to be unavoidable.

For general ω-regular properties and for every system to be checked, the
liveness-to-reachability reduction from [16] can be applied to obtain a Büchi
automaton that is, in a sense, tight enough not to miss the shortest counter-
example in the product. The necessary blow-up depends on the diameter of the
system to be checked (or alternatively some refinement of this concept), and
hence the approach cannot be used to compute one Büchi automaton that can
be used for finding shortest counter-examples for all finite-state systems. We
improve upon this result in this paper by giving a construction to obtain not
only “tight-enough” Büchi automata, but completely tight automata, for which
the diameter of the system to be checked does not need to be known.

An alternative type of counter-example has been defined by Kupferman and
Sheinvald [13], where the goal is to find the shortest lasso-shaped input/output
word that the system can read and emit during a counter-example lasso. They
call such lasso-shaped words witnesses (for the violation of a specification by a
system). While these can be much more compact than counter-example lassos
(for instance when the output of the system is always the same along a non-trivial
counter-example lasso), even approximating the size of the shortest such counter-
example word within any polynomial approximation function is NP-hard [6] for
specifications in all commonly used automata types. Hence, abstracting from the
concrete system states adds complexity to the problem, which is a motivation
to revisit the simpler counter-example lassos in this work.

2 Preliminaries

Words and graphs: Given an alphabet Σ, we denote the set of finite words over
Σ as Σ∗, and the set of infinite words as Σω. A word in Σω is called ultimately
periodic if it is of the form uvω for some u, v ∈ Σ∗, where the ω operator denotes
infinite repetition of the operand. The empty word is denoted by ε. A graph is a
two-tuple (V,E) consisting of a set of vertices V and an edge relation E ⊆ V ×V .

Automata over finite words: An automaton over finite words is a tuple A =
(Q,Σ, δA, Q0, F) with the finite set of states Q, the finite alphabet Σ, the tran-
sition relation δA ⊆ Q×Σ ×Q, the set of initial states Q0 ⊆ Q, and the set of
accepting states F ⊆ Q. We say that A is deterministic if for every q ∈ Q and
x ∈ Σ, there is only at most one q′ ∈ Q with (q, x, q′) ∈ δF , and furthermore
Q0 contains exactly one element. A run for a finite word w = w0 . . . wn−1 ∈ Σ∗
is a sequence π = π0 . . . πn with π0 ∈ Q0 and for all 1 ≤ i ≤ n, we have
πi ∈ δA(πi−1, xi−1). We say that A accepts a finite word w ∈ Σ∗ if there exists
an accepting run π = π0 . . . πn for w, i.e., for which πn ∈ F . The set of words

accepted by A is also called its language and denoted by L(A). The size of an
automaton, written as |A| is defined to be the sum of the number of states and
the number of transitions.

Büchi automata: A (non-deterministic) Büchi automaton is a tuple A = (Q,Σ,
δA, Q0, F) with the same structure as an automaton over finite words, the same
definitions of determinism and the size of an automaton, and the same definition
of runs, except that they can be infinitely long, as Büchi automata represent
languages over Σω. We say that A = (Q,Σ, δA, Q0, F) accepts a word w ∈ Σω

if and only if there exists an accepting run π = π0π1 . . . of A for w. A run is
accepting if for infinitely many i ∈ IN, we have πi ∈ F . The set of accepted
words again forms the language L(A) of A. We define the reachability relation
RA ⊆ Q×Q ofA as the transitive closure of {(q, q′) ∈ Q2 | ∃x ∈ Σ, (q, x, q′) ∈ δ}.
We say that a set of states Q′ ⊆ Q forms a strongly connected component (SCC)
of A if for every q, q′ ∈ Q′, we have that (q, q′) ∈ RA. We say that A encodes
a safety language if every word that is not in the language has a prefix all of
whose extensions are also not in the language.

Regular and ω-regular expressions: Such expressions are a way to represent lan-
guages over finite and infinite words. Starting from elements in Σ, they are
composed using the concatenation (·), union (∪), intersection (∩), and finite
repetition (∗) operators. The “·” operator is often omitted when clear from the
context. In case of ω-regular expressions, the additional ω operator denotes in-
finite repetition. No sub-expression can be concatenated to the right of such an
operator application. The set of properties over infinite words representable by
ω-regular expressions is called the ω-regular languages. It is known that these
are exactly the properties representable by non-deterministic Büchi automata.

Finite-state machines: A finite-state machine (FSM) is a tuple F = (S,Σ, δF , s0,
L) with the finite set of states S, the alphabet Σ, the transition relation δF ⊆
S × S, the initial state s0, and the labeling function L. A trace of F is an
(infinite) sequence ρ = ρ0ρ1 . . . ∈ Sω such that ρ0 = s0 and for every i ∈ IN,
we have (ρi, ρi+1) ∈ δF . The trace induces a word w = w0w1 . . . ∈ Σω with
wi = L(ρi) for all i ∈ IN.

Model checking: Given an FSM F and an error specification in the form a Büchi
automaton A over the same alphabet, the model checking problem is to test if
F has a trace that induces a word in the language of A. Whenever this is the
case, we are interested in a counter-example of F that proves that it has a run
whose word is in the language of A. Such a counter-example has the form of a
lasso, i.e., is of the shape ((c1, . . . , cm), (c′1, . . . , c

′
n)), where c1, . . . , cm is the lasso

handle and c′1, . . . , c
′
n is the lasso cycle. They fulfill the following conditions:

– All elements c1, . . . , cm, c
′
1, . . . , c

′
n are in S (the lasso elements are states).

– For all 1 < i ≤ m, we have (ci−1, ci) ∈ δ, and for all 1 < i ≤ n, we have
(c′i−1, c

′
i) ∈ δ (the lasso parts describe state transitions).

– We have cm = c′1 (lasso handle and lasso cycle are connected) and (c′n, c
′
1) ∈

δF (the lasso cycle is closed).

The lasso ((c1, . . . , cm), (c′1, . . . , c
′
n)) represents the trace c1, . . . , cm−1(c′1, . . . ,

c′n)ω, i.e., on which the lasso cycle is repeated an infinite number of times.
We say that this lasso is a counter-example for A if the word induced by the
trace is in the language of A. The constants m and n are also called the handle
length and cycle length of a lasso. The combined length of a lasso is defined to be
m+ n− 1, where the subtraction by one comes from counting the state shared
by the handle and the cycle only once.

We say that a lasso in F is a counter-example to some state q in A if there
exists a counter-example lasso for F and A, where state q is assumed to be the
sole initial state in A. We say that a lasso cycle is a counter-example lasso cycle if
it can be completed to a counter-example lasso with a single-state handle (which
is then part of the cycle itself).

Product Büchi automaton for model checking: A finite-state machine F = (S,Σ,
δF , s0, L) has a trace (a counter-example) that induces a word in the language
represented by an (error) specification in the form of a Büchi automaton A =
(Q,Σ, δA, Q0, F) if and only if there exists a counter-example lasso for the FSM.
Testing if such a lasso exists can be done by testing the product Büchi automaton
of F and A for language emptiness. Formally, we define this product automaton
as P = (QP , Σ, δP , QP,0, FP) with QP = Q×S, QP,0 = Q0×{s0}, FP = F ×S,
and the transition relation is defined as

δP = {((q, s), x, (q′, s′)) ∈ QP ×Σ ×QP | (s, s′) ∈ δF , q′ ∈ δ(q, L(s))}.
A lasso in P is defined in the same way as in a finite-state machine. A lasso
in P is accepting if its cycle contains at least one state from FP . Since a Büchi
automaton has a non-empty language exactly if and only if such a lasso can be
found, P can be used to model check F against A.

Tight automata: While a product Büchi automaton P between an FSM F and a
Büchi automaton can be used to check if a counter-example for F and A exists,
the combined length of the shortest accepting lasso in P may be higher than the
length of the shortest counter-example lasso for A in F . Intuitively, the reason
for this difference is that P incorporates the structure of A, whereas the defini-
tion of a counter-example lasso in F does not. However, the structure of A may
be suitable to avoid this issue. We say that A is tight if for every counter-example
lasso for every FSM F , there is an accepting lasso in P of the same length. Since
P is the product of A and F , it is easy to obtain a counter-example lasso from
an accepting lasso in P such that both are of the same length. This allows using
P to find shortest counter-example lassos, and since it is known that finding
shortest accepting lassos in P is solvable in polynomial time [18, 11], so is the
former problem.

Satisfiability problem: The satisfiability problem is to check if a Boolean formula
in conjunctive normal form over some set of Boolean variables {v1, . . . , vn} has
a satisfying assignment. The conjuncts of the formula are called its clauses, and
the number of clauses is also denoted by |ψ|. The satisfiability problem often
serves as the canonical NP-complete problem. We write c ∈ ψ for some clause c
if c is a clause in ψ.

3 Tightening Büchi automata

With a tight specification automata, computing shortest counter-examples is
(computationally) easy. We will show in this section that by utilizing two previ-
ous constructions from Calbrix et al. [2] and Farzah et al. [9], we can translate
an arbitrary Büchi automaton into an equivalent tight automaton. The first
construction is captured by the following theorem:

Theorem 1 ([2], Section 5). Given a non-deterministic Büchi automaton A
over an alphabet Σ with n states, we can build a deterministic finite-state au-
tomaton A′ over the alphabet Σ∪{$} of size exponential in n that accepts exactly
the words u$w with u,w ∈ Σ∗ for which uvω is accepted by A. Building A′ does
not take more time than polynomial in the combined input and output sizes.

Two Büchi automata accept the same language if they accept the same ulti-
mately periodic words [2]. Since these are captured by the automaton A′, that
automaton encodes the essence of an ω-regular language. Since A′ is a determin-
istic automaton over finite words (DFA), it can also be minimized in polynomial
time.

The automaton A′ can now be translated back to an automaton A′′ with the
same language as A with only polynomial blow-up. A construction for this step
has been given by Farzah et al. [9], whose properties needed in this section we
distill into the following proposition:

Proposition 1 ([9]). Let A′ = (Q′, Σ ∪ {$}, δ′, Q′0, F ′) be a DFA that accepts
exactly the words u$v with u, v ∈ Σ∗ for which uvω is a word in some ω-regular
language L. We can compute, in polynomial time, a set of pairs P of regular
languages such that

L =
⋃

(A,B)∈P

ABω. (1)

Furthermore, (1) P is of cardinality quadratic in |Q′|, (2) for every (A,B) ∈ P ,
the languages A and B are representable by DFAs with at most |Q′| + 1 states,
and (3) for every word u$v in the language of A′, there exists some (A,B) ∈ P
with u ∈ L(A) and v ∈ L(B).

This characterization enables the efficient construction of a non-deterministic
Büchi automaton for an ω-regular language from a DFA accepting its ultimately
periodic words. While the core idea of the following construction was already
suggested in a footnote in [9], we changed it substantially to make the resulting
automaton tight.

Lemma 1. Let A′ = (Q′, Σ ∪ {$}, δ′, Q′0, F ′) be a DFA that accepts exactly
the words u$v with u, v ∈ Σ∗ for which uvω is a word in some ω-regular
language L. Let P = {P1, . . . , Pn} be the set of pairs of regular languages
described in Proposition 1. Let furthermore AAi = (QAi , Σ, δ

A
i , Q

A
0,i, F

A
i) and

ABi = (QBi , Σ, δ
B
i , Q

B
0,i, F

B
i) be the DFAs for the elements Pi = (Ai, Bi) for

1 ≤ i ≤ n, where w.l.o.g, all states in the these automata have distinct names.

We can build a non-deterministic Büchi automaton Â = (Q̂,Σ, δ̂, Q̂0, F̂) captur-
ing L with the following components:

Q̂ =
⋃

1≤i≤n

QAi ∪ (QBi × B)

Q̂0 =

 ⋃
1≤i≤n

QA0,i

 ∪ ⋃
1≤i≤n,QA

0,i∩FA
i 6=∅

QB0,i × B

δ̂ =
⋃

1≤i≤n

δAi ∪ {((q, b), x, (q′, b′) | (q, x, q′) ∈ δBi , b′ = (q′ ∈ FBi)}

∪
⋃

1≤i≤n

{(q, x, (q′, b)) | q ∈ QAi , x ∈ Σ,∃q′′ ∈ FAi , (q, x, q′′) ∈ δAi ,

q′ ∈ QB0,i, b ∈ B}

∪
⋃

1≤i≤n

{((q, b), x, (q′, true)) | q ∈ QBi , x ∈ Σ,∃q′′ ∈ FBi , (q, x, q′′) ∈ δBi ,

q′ ∈ QB0,i, b ∈ B}

F̂ =
⋃

1≤i≤n

QB0,i × {true}

The construction in the lemma essentially defines a Büchi automaton implement-
ing Equation 1, with the modification that states in the automata ABi have been
duplicated by attaching a Boolean flag. Due to the changes (which are necessary
to derive Corollary 1 later), a proof of correctness is in order:

Proof. Since a Büchi automaton Â captures an ω-regular language L if the
language of Â has exactly the same ultimately periodic words as the ones in L,
we can restrict our attention to those.

First proof direction: Let uvω be an ultimately periodic word in L. Then,
by Theorem 1, we have that u$v ∈ L(A′). By Proposition 1, we have that u ∈ Ai
and v ∈ L(Bi) for some (Ai, Bi) ∈ P . We can now construct an accepting
lasso for uvω in Â. Since u = u1 . . . uk ∈ L(Ai), there exits a accepting run
πA = π0 . . . πk for u in Ai.

By the construction of Â, there exists a prefix run π0 . . . πk−1 for the same
word in Â. Furthermore, if k > 0, then there exist a transition (πk−1, uk, (q,
true)) for some q ∈ QB0,i. If u is the empty word, then (q, true) is an initial

state. Hence, in both cases every state in QB0,i × {true} is reached by some run

in Â after reading u.
Since v ∈ L(Bi), there exists a run π′0 . . . π

′
r with π′0 ∈ QB0,i and π′r ∈ FBi for

v = v1 . . . vr. By the construction of Â, the (prefix) run π′0 . . . π
′
r−1 exists in Â

as well, except that every state element is labeled by whether the last visited
state is accepting, where the label for π′0 can also be true. From the last such
state (π′r−1, b) for some b ∈ B, the construction of Â furthermore ensures that

((π′r−1, b), vr, (π
′
0, true)) ∈ δ̂. This closes a cycle in Â. Since the cycle can be

repeated indefinitely long when reading vω and it contains at least one accepting
state, namely (π′0, true), we constructed an accepting infinite run in Â for uvω,
proving its acceptance.

Second proof direction: Let w1w2 . . . = uvω be a word accepted by Â.
Since Â has a finite number of states, there exists an accepting run of the shape
π = π0 . . . πk−1(πk . . . πr−1)ω for it such that at least one state in F̂ occurs in
πk . . . πr−1. Without loss of generality, we can also assume that πk ∈ F̂ , as the
prefix of the lasso can always be extended slightly to rotate the cycle.

Due to the construction of Â, the complete run π takes place in a part of
Â generated by one element (Ai, Bi) in P (as there are no transitions between
these parts). Let s be the index in π at which π reaches the states in QBi ×B for
the first time. We have that w1 . . . ws is a word in the language of Ai by the fact
that such a switch is only possible in Â after reading a word in L(Ai). By the fact
that πk is an accepting state and the construction of Â, we have that ws+1 . . . wk
is a word in L(Bi) (if non-empty), as πs . . . πk simulates the QBi component of a
run from an initial state in Bi to an accepting state, except that πk is replaced
by a state in (QB0,i, true). As such states can only be reached when reaching an
accepting state for ws+1 . . . wk in Bi, it follows that ws+1 . . . wk ∈ L(Bi).

For the same reason and since π is an accepting lasso, we have that the word
wk+1 . . . wr is accepted by Bi as well. Since π is a lasso for the word w, this
actually means that wr+j·(r−k)+1 . . . wr+(j+1)·(r−k) is the same word for every
j ∈ IN. This observation allows us to overall decompose w as follows:

w = w0w1 . . . ws︸ ︷︷ ︸
∈L(Ai)

ws+1 . . . wk︸ ︷︷ ︸
∈L(Bi) if not ε

wk+1 . . . wr︸ ︷︷ ︸
∈L(Bi)

wr+1 . . . w2r−k︸ ︷︷ ︸
∈L(Bi)

. . .

This proves that w ∈ L by Proposition 1. ut

Corollary 1. Let Â be a Büchi automaton built from some DFA A′ = (Q′, Σ ∪
{$}, δ′, Q′0, F ′) that accepts exactly the words u$v with u, v ∈ Σ∗ for which uvω

is a word in some ω-regular language L using the construction from Lemma 1.
We have that Â is a tight automaton.

Proof. The first direction of the proof of the preceding lemma proves the exis-
tence of an accepting lasso of length |u| + |v| − 1 in Â for every word uvω in
L. ut

By applying the constructions from Theorem 1 and Lemma 1 in succession, we
can thus obtain a tight Büchi automaton from an arbitrary Büchi automaton.
Since the construction from Lemma 1 has only a polynomial blow-up in the
automaton size, we obtain an overall size exponential in the size of the original
Büchi automaton. Since Kupferman and Vardi [14] gave an exponential lower
bound for the safety case, this construction is complexity-theoretically optimal
on a large scale. On a finer scale, our approach yields automata of size 2O(n2),
while the lower bound by Kupferman and Vardi’s for the safety case is only
O(2n), leaving a small gap to be filled in future work.

4 Component Lassos – Negative Result

While we have seen above that in general, tight Büchi automata need to be
exponentially larger than (the smallest) equivalent arbitrary Büchi automata,
this does not automatically mean that finding shortest counter-example lassos
for arbitrary specification Büchi automata is not possible in polynomial time.

In previous work [6], we showed that the smallest value of |u|+ |v| for some
ultimately periodic word uvω in the language of a Büchi automata is NP-hard
to approximate within any polynomial approximation function p. Under the
assumption that NP6=P, this means that no polynomial-time algorithm exists
that given a non-deterministic Büchi automaton always outputs a value between
|u|+ |v| and p(|u|+ |v|) for some ultimately periodic word uvω in the language of
the automaton with minimal |u|+ |v|. The result does not apply to the problem
of finding shortest counter-example lassos as it adds the requirement that some
state is reached twice after |u| + |v| steps. Even if that problem is still NP-
complete, its approximation hardness could be lower, which would be useful for
the practical application of model checking. We show that, unfortunately, this
is not the case. The following proof transfers the main ideas from [6] to the
component lasso setting.

Proposition 2. Approximating the length of the shortest lasso of a finite-state
machine F that is accepted by a non-deterministic Büchi automaton A within
any polynomial approximation function p is NP-hard.

Proof. We reduce the NP-hard satisfiability problem to the (approximation)
problem at hand. Let p be a polynomial function and ψ be a satisfiability problem
in conjunctive normal form over the set of variables V = {v1, . . . , vn}, where we
assume that every solution has v1 = false. The satisfiability is still NP-hard
under this restriction, as it is easy to extend a SAT instance by one variable and
to add a clause that requires the additional variable to have a false value.

We build a Büchi automaton over the language Σ = {false, true} that im-
plements the following language:

L =
⊙
c∈ψ

(⋃
x1,...,xn∈Bn,(v1=x1,...,vn=xn)|=c

(x1 . . . xn)

︸ ︷︷ ︸
encc

)p(n)+1

·Σω

In this equation, the
⊙

operator refers to taking the concatenation of the ele-
ments in its scope. Here, the operator ranges over all clauses in the SAT instance
ψ, where the order does not matter for the scope of this proof. Note that while the
union operator in the equation ranges over a set of size exponential in n, a Büchi
automaton part for one element encc is of size at most 2n, as we demonstrate in
Figure 1. We furthermore consider a finite-state machine F with 2n − 1 states
of the shape given in Figure 2. To prove the approximation hardness result, we
show that:

f

t

*

*

t

f

*

*

*

f

t

*

t

f

*

*

* *

Fig. 1. Example automaton part for n = 8 and a clause c1∨¬c3∨c5∨¬c6, where f is an
abbreviation for false, t is an abbreviation for true, and ∗ captures both characters.

1. the Büchi automaton for L can be built in time polynomial in the number
of clauses in ψ, n, and p(n) and is of size polynomial in ψ, n, and p(n);

2. if ψ has a solution, then there exists a counter-example lasso in F of size n;
3. if there exists a counter-example lasso of size at most p(n), then we can

obtain a solution to ψ from the lasso.

1) Note that L can be represented by concatenating |ψ| · (p(n) + 1) many
automaton parts with 2n states each (as shown in Fig. 1). The final Σω compo-
nent needs a single accepting state. Overall, the number of states of the resulting
automaton is (p(n) + 1) · 2n · |ψ|+ 1.

2) Let x1, . . . , xn be a solution to ψ (where x1 = false by the assumption
above). The word (x1, . . . , xn)ω induces a counter-example lasso starting in the
initial state of the FSM, proceeding to the states labeled by x2, . . . , xn, and loop-
ing back to the initial state afterwards. Since we have x1, . . . , xn |= ψ, we know
that x1, . . . , xn is a word in encc for every c ∈ ψ. Hence, (x1, . . . , xn)ω is accepted
by
⊙

c∈ψ(encc)
m for any m ∈ IN and by the subsequent Σω component of L.

3) Let w = uvω be a counter-example lasso of size at most p(n). Note that
|v| needs to be a multiple of n for the lasso to be correct. We rewrite w slightly
to u′v′ω by unrolling the lasso until the length of u′ is also a multiple of n (with
|v′| = |v|). Let x1 . . . xn be the first n characters of v′. Since u′ and v′ are of sizes
that are multiples of n, for every c, we have that v′ needs to be accepted by encc.
This is because as every encc is repeated p(n)+1 times, v′ is not long enough to
have x1 . . . xn miss all p(n) + 1 repetitions. Due to the construction of encc, we
have that x1 . . . xn is a model of the clause c. Since this line of reasoning holds
for all clauses c, we know that x1, . . . , xn is a model of the whole formula ψ. ut

Note that the automaton built in Proposition 2 is actually deterministic, hence
showing the hardness of the problem even for deterministic Büchi automata.

5 Component Lassos – Positive Result

Now that we know that finding shortest counter-example lassos for general ω-
regular properties is computationally difficult (even for any reasonable approx-
imation version of the problem), the question arises whether there are at least
some easy classes of properties and/or finite-state machines. While we have seen
in the previous section that the determinism of a specification automaton does
not change the computational complexity, other properties of the specification

f f

t

. . .

. . .

f

t

f

t

n columns of states

Fig. 2. Finite-state machine shape for the proof of Proposition 2, where f is an abbre-
viation for false and t is an abbreviation for true.

automaton can be used to derive a more detailed characterization of the com-
plexity of finding shortest counter-example lassos.

An interesting structural property of specification automata is the maximal
size of the strongly connected components (SCCs) in the automata. For instance,
if all SCCs of a specification automaton have a size of at most 1, we call such an
automaton very-weak or one-weak. Intuitively, this means that all loops in the au-
tomaton are self-loops. This subset of the set of non-deterministic Büchi automa-
ta has been identified to characterize the set of properties of reactive systems
whose complements are representable by both LTL and computation tree logic
with only universal path quantifiers (ACTL), where in the LTL case the formula
is checked along all executions of the system [15]. Very-weak automata have been
used to derive heuristically shorter counter-example lassos [1] with the model
checker spin. We extend this previous positive result on a more fundamental
level by giving a polynomial-time algorithm to find guaranteed shortest counter-
example lasso cycles for specification automata with a fixed upper bound on the
size of the SCCs. We hence no longer require the SCCs to have a size of at most
1 and give an algorithm that is guaranteed to find shortest counter-examples.

The main idea of the following construction is that if an SCC is small enough,
we can keep track of multiple runs of the specification automaton from all SCC
states in parallel while traversing a lasso cycle in the FSM. When the lasso cycle
in the FSM is closed, we then check if transitions of the specification automaton
can be stitched together to form an accepting cycle for the lasso cycle of the FSM.
Doing so requires time exponential in the number states in an SCC. Switches
between SCCs do not have to be taken into consideration here due to the fact
that we are only interested in minimizing the length of lasso cycles. We start by
defining a graph that is suitable for searching for shortest component lassos.

Definition 1. Let A = (Q,Σ, δA, Q0, F) be a Büchi automaton and F = (S,Σ,
δF , s0, L) be a finite-state machine. Let S1, . . . ,Sm be the state sets of the (max-
imal) strongly connected components of A that contain at least one accepting
state each.

For each 1 ≤ k ≤ m, we define the lasso-searching graph of Sk and F as
a tuple (V,E0 ∪ E1) with the set of vertices V , the normal edges E0, and the
closing edges E1. These are defined as:

V = S × Sk × {Sk → (Sk × B ∪ ⊥)}

E0 = {((s, q̄, f), (s′, q̄, f ′) ∈ V × V | ∃x ∈ Σ : (s, x, s′) ∈ δF
∧ ∀q ∈ Sk : f ′(q) = ⊥ ∨ ∃q′, q′′ ∈ Sk, b ∈ B : f(q) = (q′, b)

∧ (q′, x, q′′) ∈ δA ∧ f ′(q) = (q′′, b ∨ (q′′ ∈ F))}
E1 = {(s, q̄, f), (s, q̄, f) ∈ V × V : ∃q1, . . . , ql ∈ Sk : q1 = q̄,

∀2 ≤ i ≤ l, f(qi−1)|Q = qi, f(qn)|Q = q1,

∃1 ≤ j ≤ l, f(qj)|B = true}

Note that the SCC decomposition of an automaton can be computed in time lin-
ear in its number of states and transitions [20]. Hence, S1, . . . ,Sm can be easily
obtained and for every strongly connected component Sk, the graph (V,E0∪E1)
can be built in time polynomial in the sizes of A and F and exponential in |Sk|.
The first component of a state (s, q̄, f) tracks the state in the FSM, and the
second one denotes an anchor state of the specification automaton, which never
changes along graph edges. The third component keeps track of from which SCC
state which other state can be reached for the labels along the cycle part in F
traversed so far.

Lemma 2. If and only if some state (s, q̄, f) is reachable from itself in n+1 ∈ IN
steps using first only edges from E0 and then closing the cycle with an edge in
E1, there exists an accepting lasso cycle from FSM state s for the specification
automaton A of length n, using q̄ as the first state of the lasso cycle.

Proof. ⇐: Let s1 . . . sn be some counter-example lasso cycle for some state q ∈ A
with the labels x1, . . . , xn along the cycle. In this case, there exists an accepting
cycle q1q2 . . . ∈ Qω of the specification automaton for the same (suffix) trace
of the system. Without loss of generality, we can assume that this cycle is ul-
timately periodic and that when the same state occurs for the second time at
a position that is a multiple of n, the cycle is closed. Let us consider the pairs
(qnk+1, qn(k+1)). By the assumption, all such pairs have distinct left elements,

and let their number be l ∈ IN. Let qj1, . . . , q
j
n+1 be the states of the cycle inA (for

1 ≤ j ≤ l) between the state pairs, where for all 1 ≤ j ≤ l, we have qj1 = qjn+1.
We show that there is a loop in (V,E0 ∪ E1) from state v = (s1, q1, f) with

f(qj1) = (qj1, b) for some b ∈ IN for all states qj1 for 1 ≤ j ≤ l, and f(q′) = ⊥ for
all other states q′. We can obtain this loop by successively transitioning, for each
step 1 ≤ i ≤ n + 1, to state vi = (sj , q, fi) for fi(q

j
i) = (qji , b) for some b ∈ IN

for all states qji for 1 ≤ j ≤ l, and fi(q
′) = ⊥ for all other states q′ ∈ Sk. By the

assumption that qj1, . . . , q
j
n+1 is a valid transition sequence in A for x1, . . . , xn,

the construction of (V,E0 ∪ E1) includes these edges. Furthermore, by the as-
sumption that the lasso is accepted by A, along one of these l sequences, an
accepting state is visited. By the construction of E0, this means that one of the
Boolean values encoded by fn has a true value. Since the parts qj1, . . . , q

j
n (for

1 ≤ j ≤ l) can be stitched together to form an accepting cycle, the definition of
E1 ensures that a suitable closing edge exists.
⇒: Let v1, . . . , vn+1 be a path in (V,E0 ∪ E1) ending with an edge in E1.

We know from the construction of the graph that (1) the FSM loops under

the label sequence x1, . . . , xn−1 used for deriving the cycle, and (2) for every
q ∈ Sk and vi = (si, q̄, fi) (for 1 ≤ i ≤ n + 1) with fi(q) 6= ⊥, we have that
there exists a transition sequence between f1(q)|Q and fn(q)|Q for x1, . . . , xn.
Furthermore, fn(q)|B is true if and only if along the way, an accepting state
is visited. This allows us to construct an accepting lasso cycle for x1, . . . , xn−1
by taking f1(q̄)|Q, f2(q̄)|Q, . . . , fn(q̄)|Q, f1(fn(q̄)|Q)|Q, f2(fn(q̄)|Q)|Q, . . . , fn(fn(
q̄)|Q)|Q, . . . until the cycle is closed after a multiple of n states. Since the closing
edge from E1 can only be taken if the lasso cycle is closed and one Boolean flag
has a true value, this part of the proof follows. ut

Since finding shortest paths in a graph is computationally easy by performing a
breadth-first search, and adapting breadth-first search to use E1 as final transi-
tions (back to the initial state) during the search is also simple, we can iterate
over all states in (V,E0 ∪E1) and search for shortest loops back the same state
in time polynomial in |E0 ∪E1|. This allows us to derive the following corollary:

Corollary 2. For every fixed c ∈ IN, we can label every state in S × Q by the
shortest lasso cycle length of a counter-example lasso in time polynomial in the
sizes of A and F if all SCCs of A have sizes of at most c.

Proof. For every SCC Sk, we build the graph defined above, label every state
by the shortest lasso, and then take minf∈Q→Q×B∪⊥(s, q̄, f) as the length of the
shortest counter-example lasso cycle from (s, q̄). ut

As a final step of our construction, we need to compute which lasso cycles are
actually reachable from (q0, s0) for some q0 ∈ Q0. By performing a depth-first
search in the classical product automaton, we can identify those states (q, s)
that are reachable and then select one with a shortest cycle. The actual counter-
example lasso can be obtained by taking the path in the product automaton up
to the selected state (q, s) as the lasso handle, and taking the FSM state compo-
nent of a cycle in the graph (V,E0∪E1) that witnesses the length of the shortest
counter-example lasso cycle as lasso cycle. Taking all parts of the construction
together, we obtain:

Corollary 3. Given a FSM F and a specification Büchi automaton A in which
every strongly connected component has at most c ∈ IN states, we can compute
a counter-example lasso for F and A that minimizes the cycle length in time
polynomial in |F| · |A| and exponential in c.

Note that the overall construction can be computationally streamlined. For in-
stance, a search for a shortest lasso cycle can also keep the anchor state q̄ implicit,
reducing the size of the graph. For the simplicity of presenting the main idea of
our approach, we did not apply such improvements here.

Note that the approach cannot be generalized to minimize the combined
length of a counter-example lasso. The automata built from satisfiability problem
instances in the hardness proof of Section 4 only have a single strongly connected
component each, and these components only have a single state each. Hence,
finding counter-example lassos with a minimal combined length is hard even the
in the case of very-weak Büchi automata.

F
o
r

F
S
M

cy
cl

es
o
f

o
d
d

le
n
g
th

F
o
r

F
S
M

cy
cles

o
f

ev
en

len
g
th
q0 q2 q3 q4 q5 q6 q7

*

*

*
a

*

a*

*
*

*

*

a

*

Fig. 3. A tight automaton for the alphabet Σ = {a, b} and the specification that at
infinitely many even positions, the letter in a word is a.

6 Conclusion

In this paper, we revisited the problem of obtaining shortest counter-example
lassos for ω-regular specifications. Interestingly, it was open before this paper
whether finding (approximately) shortest counter-example lassos is NP-hard or
not for specifications given as non-deterministic Büchi automata. Our main
result is negative: even approximating the (combined) length of the shortest
counter-example lasso is NP-hard within any reasonable approximation func-
tion, let alone approximation factor. This is unfortunate, as approximate shortest
counter-example lassos could be interesting for the model checking practitioner.

On the positive side, we showed how by using two existing automaton transla-
tions, we can make an arbitrary non-deterministic Büchi automaton tight, which
enables the use of approaches for finding shortest accepting lassos in product au-
tomata to also find shortest counter-example lassos. Furthermore, we looked at
the parameterized complexity of finding shortest counter-example lasso cycles
and showed that for specification automata with small strongly connected com-
ponents (SCCs), finding counter-example lassos with shortest cycles is possible in
polynomial time for arbitrary (but fixed) SCC size limits. This result is interest-
ing for the case of tracking down starvation bugs in models – in such situations,
the focus is often on how the system can stall without making progress rather
than how the system to be checked can reach such a situation. If the correspond-
ing liveness property has a Büchi automaton with small SCCs, our construction
is applicable.

While making Büchi automata tight leads to an exponential blow-up in their
sizes, the problem could be mitigated by minimizing the resulting specification
automaton before using it in a model checker. This problem cannot be tackled
with previous simulation-based minimization approaches as we have to take care
that loops with an accepting state are only removed if there are other loops of
the same length that together accept the lasso cycles captured by the removed
loop. We visualize this observation in Figure 3, which shows a tight automaton
that is only tight because it has different SCCs for lasso cycles with even and
odd lengths. Suitable minimization algorithms for tight automata that retain
such redundancies in the specification automata still have to be developed, and
we leave this challenge to future work.

References

1. Adabala, K., Ehlers, R.: A fragment of linear temporal logic for universal very
weak automata. In: Automated Technology for Verification and Analysis - 16th
International Symposium (ATVA). Lecture Notes in Computer Science, vol. 11138,
pp. 335–351. Springer (2018)

2. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w -
languages. In: 9th International Conference on Mathematical Foundations of Pro-
gramming Semantics (MFPS). Lecture Notes in Computer Science, vol. 802, pp.
554–566. Springer (1993)

3. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: 32nd Conference
on Design Automation (DAC). pp. 427–432. ACM Press (1995)

4. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: 23rd International Joint Conference on Artificial Intelligence
(IJCAI). pp. 854–860. IJCAI/AAAI (2013)

5. Edelkamp, S., Sulewski, D., Barnat, J., Brim, L., Simecek, P.: Flash memory effi-
cient LTL model checking. Sci. Comput. Program. 76(2), 136–157 (2011)

6. Ehlers, R.: Short witnesses and accepting lassos in ω-automata. In: 4th Interna-
tional Conference on Language and Automata Theory and Applications (LATA).
Lecture Notes in Computer Science, vol. 6031, pp. 261–272. Springer (2010)

7. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Series on Integrated
Circuits and Systems, Springer (2006)

8. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–
1175 (2005)

9. Farzan, A., Chen, Y., Clarke, E.M., Tsay, Y., Wang, B.: Extending automated
compositional verification to the full class of omega-regular languages. In: 14th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 4963, pp. 2–17.
Springer (2008)

10. Gastin, P., Moro, P., Zeitoun, M.: Minimization of counterexamples in SPIN. In:
Model Checking Software, 11th International SPIN Workshop. Lecture Notes in
Computer Science, vol. 2989, pp. 92–108. Springer (2004)

11. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Model
Checking Software, 10th International SPIN Workshop. Lecture Notes in Computer
Science, vol. 2648, pp. 121–135. Springer (2003)

12. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(May 1997)

13. Kupferman, O., Sheinvald-Faragy, S.: Finding shortest witnesses to the nonempti-
ness of automata on infinite words. In: 17th International Conference on Con-
currency Theory (CONCUR). Lecture Notes in Computer Science, vol. 4137, pp.
492–508. Springer (2006)

14. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: 11th In-
ternational Conference on Computer Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 1633, pp. 172–183. Springer (1999)

15. Maidl, M.: The common fragment of CTL and LTL. In: 41st Annual Symposium
on Foundations of Computer Science (FOCS). pp. 643–652 (2000)

16. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reach-
ability analysis. STTT 5(2-3), 185–204 (2004)

17. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking
of LTL with past. In: 11th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer
Science, vol. 3440, pp. 493–509. Springer (2005)

18. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: 11th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Lecture Notes in Computer Science, vol. 3440, pp. 174–190.
Springer (2005)

19. Sebastiani, R., Tonetta, S.: “more deterministic” vs. “smaller” Büchi automata for
efficient LTL model checking. In: Correct Hardware Design and Verification Meth-
ods, 12th IFIP WG 10.5 Advanced Research Working Conference (CHARME). pp.
126–140 (2003)

20. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

