
Formal Methods in Computer-Aided Design 2022

Synthesizing Transducers from Complex
Specifications

Anvay Grover
The University of Wisconsin-Madison

Madison, USA
anvayg@cs.wisc.edu

Ruediger Ehlers
Clausthal University of Technology

Clausthal, Germany
ruediger.ehlers@tu-clausthal.de

Loris D’Antoni
The University of Wisconsin-Madison

Madison, USA
loris@cs.wisc.edu

Abstract—Automating string transformations has been a driv-
ing application of program synthesis. Existing synthesizers that
solve this problem produce programs in domain-specific lan-
guages (DSL) that are designed to simplify synthesis and therefore
lack nice formal properties. This limitation prevents the synthe-
sized programs from being used in verification applications (e.g.,
to check complex pre-post conditions) and makes the synthesizers
hard to modify due to their reliance on the given DSL.

We present a constraint-based approach to synthesizing trans-
ducers, a model with strong closure and decidability properties.
Our approach handles three types of specifications: input-output
(i) examples, (ii) types expressed as regular languages, and
(iii) distances that bound how many characters the transducer
can modify when processing an input string. Our work is the first
to support such complex specifications and it does so by using
the algorithmic properties of transducers to generate constraints
that can be solved using off-the-shelf SMT solvers. Our synthesis
approach can be extended to many transducer models and it can
be used, thanks to closure properties of transducers, to compute
repairs for partially correct transducers.

I. INTRODUCTION

String transformations are used in data transformations [1],
sanitization of untrusted inputs [2], [3], and many other
domains [4]. Because in these domains bugs may cause serious
security vulnerabilities [2], there has been increased interest
in building tools that can help programmers verify [2], [3] and
synthesize [1], [5], [6] string transformations.

Techniques for verifying string transformations rely on
automata-theoretic approaches that provide powerful decid-
ability properties [2]. On the other hand, techniques for
synthesizing string transformations rely on domain-specific
languages (DSLs) [1], [5]. These DSLs are designed to make
synthesis practical and have to give up the closure and
decidability properties enabled by automata-theoretic models.
The disconnect between the two approaches raises a natural
question: Can one synthesize automata-based models and
therefore retain and leverage their elegant properties?

A finite state transducer (FT) is an automaton where each
transition reads an input character and outputs a string of
output characters. For instance, Figure 1 shows a transducer
that ‘escapes’ instances of the " character. So, on input
a"\"a, the transducer outputs the string a\"\\"a. FTs have
found wide adoption in a variety of domains [3], [7] because
of their many desirable properties (e.g., decidable equivalence
check and closure under composition [8]). There has been

q0start q1

a → a

" → \"

\ → \

a → a

" → "

\ → \

(a) Transducer EscapeQuotes

Examples: {a"a 7→ a\"a, a\\a 7→ a\\a, a\a 7→ a\a, a\"a 7→ a\"a, \ 7→
\}
Types: [a"]∗\?|([a"]∗\[a"\][a"]∗)∗ → a∗\?|(a∗\[a"\]a∗)∗

Distance: At most 1 edit per input character

(b) Specification to synthesize EscapeQuotes

Fig. 1: Simplified version of EscapeQuotes from [2].

increasing work on building SMT solvers for strings that
support transducers; the Ostrich tool [9] allows a user to write
programs in SMT where string-transformations are modelled
using transducers. One can then write constraints over such
programs and use an SMT solver to automatically check for
satisfiability or prove unsatisfiability of those constraints. For
example, given a program like the following:

y = escapeQuotes(x)
z = escapeQuotes(y)
assert(y==z) //Checking idempotence

one can use Ostrich to write a set of constraints and use them
to prove whether the assertion holds. However, to do so, one
needs to first write a transducer T that implements the function
escapeQuotes. However, writing transducers by hand is a
cumbersome and error-prone task and what we present in this
paper is an approach for synthesizing such transducers.

In this paper, we present a technique for synthesizing
transducers from high-level specifications. We use three dif-
ferent specification mechanisms to quickly yield desirable
transducers: input-output examples, input-output types, and
input-output distances. When provided with the specification
in Figure 1b, our approach yields the transducer in Figure 1.
While none of the three specification mechanisms are effective
in isolation, they work well altogether. Input-output examples
are easy to provide, but only capture finitely many inputs.
Similarly, input-output types are a natural way to prevent a
transducer from generating undesired strings and can often be

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

obtained from function/API specifications. Last, input-output
distances are a natural way to specify how much of the input
string should be preserved by the transformation.

We show that if the size of the transducers is fixed, all such
specifications can be encoded as a set of constraints whose
solution directly provides a transducer. While the constraints
for examples are fairly straightforward, to encode types and
distances, we show that one can use constraints to “guess”
the simulation relation and the invariants necessary to prove
that the transducer has the given type and respects the given
distance constraint.

Because our constraint-based approach is based on decision
procedures and is modular, it can support more complex
models of transducers: (i) Symbolic Finite Transducers (s-
FTs), which support large alphabets [10], and (ii) FTs with
lookahead, which can express functions that otherwise require
non-determinism. In addition, closure properties of transducers
allow us to reduce repair problems for string transformations
to our synthesis problem.
Contributions: We make the following contributions.

• A constraint-based synthesis algorithm for synthesizing
transducers from complex specifications (Sec. III).

• Extensions of our synthesis algorithm to more complex
models—e.g., symbolic transducers and transducers with
lookahead—and problems—e.g., transducer repair—that
showcase the flexibility of our approach and the power of
working with transducers, which enjoy strong theoretical
properties—unlike domain-specific languages (Sec. IV).

• ASTRA: a tool that can synthesize and repair transducers
and compares well with a state-of-the-art tool for synthe-
sizing string transformations (Sec. V).

Proofs and additional results are available at [11].

II. TRANSDUCER SYNTHESIS PROBLEM

In this section, we define the transducer synthesis problem.
A deterministic finite automaton (DFA) over an alphabet Σ

is a tuple D = (QD, δD, q
init
D , FD): QD is the set of states,

δD : QD × Σ → QD is the transition function, qinitD is the
initial state, and FD is the set of final states. The extended
transition function δ∗D : QD × Σ∗ → QD is defined as
δ∗D(q, ε) = q and δ∗D(q, au) = δ∗D(δD(q, a), u). We say that D
accepts a string w if δ∗D(q

init
D , w) ∈ FD. The regular language

L(D) is the set of strings accepted by a DFA D.
A total finite state transducer (FT) is a tuple T =

(QT , δ
st
T , δ

out
T , qinitT), where QT are states and qinitT is the

initial state. Transducers have two transition functions: δstT :
qT×Σ → qT defines the target state, while δoutT : qT×Σ → Σ∗

defines the output string of each transition. The extended
function for states δst∗T is defined analogously to the extended
transition function for a DFA. The extended function for output
strings is defined as δout∗T (q, ε) = ε and δout∗T (q, au) =
δout∗T (q, a) ·δoutT (δst∗T (q, a), u). Given a string w we use T (w)
to denote δout∗T (qinitT , w), i.e., the output string generated by
T on w. Given two DFAs P and Q, we write {P}T{Q} for a
transducer T iff for every string s in L(P), the output string
T (s) belongs to L(Q).

An edit operation on a string is either an insertion/deletion
of a character, or a replacement of a character with a different
one. For example, editing the string ab to the string acb
requires one edit operation, which is inserting a c after the
a. The edit distance ed_dist(s, t) between two strings s and
t is the number of edit-operations required to reach t from s.
We use len(w) to denote the length of a string w. The mean
edit distance mean_ed_dist(s, t) between two strings s and t
is defined as ed_dist(s, t)/len(s). For example, the mean edit
distance from ab to acb is 1/2 = .5.

We can now formulate the transducer synthesis problem.
We assume a fixed alphabet Σ. If the specification requires
that s is translated to t, we write that as s 7→ t.

Problem Statement 1 (Transducer Synthesis). The transducer
synthesis problem has the following inputs and output:
Inputs

• Number of states k and upper bound l on the length of
the output of each transition.

• Set of input-output examples E = [s 7→ t].
• Input-output types P and Q, given as DFAs.
• A positive upper bound d ∈ Q on the mean edit distance.

Output A total transducer T = (QT , δ
st
T , δ

out
T , qinitT) with k

states such that:
• Every transition of T has an output with length at most
l, i.e., ∀qT ∈ QT , a ∈ Σ. len(δoutT (q, a)) ≤ l.

• T is consistent with the examples: ∀s 7→ t ∈ E. T (s) = t.
• T is consistent with input-output types, i.e., {P}T{Q}.
• For every string w ∈ P , mean_ed_dist(w, T (w)) ≤ d.

The synthesis problem that we present here is for FTs,
and in Section III, we provide a sound algorithm to solve
it using a system of constraints. One of our key contributions
is that our encoding can be easily adapted to synthesizing
richer models than FTs (e.g., symbolic transducers [8] and
transducers with regular lookahead), while still using the same
encoding building blocks (Section IV).

III. CONSTRAINT-BASED TRANSDUCER SYNTHESIS

In this section, we present a way to generate constraints to
solve the transducer synthesis problem defined in Section II.
The synthesis problem can then be solved by invoking a
Satisfiability Modulo Theories (SMT) solver on the constraints.

We use a constraint encoding, rather than a direct algorith-
mic approach because of the multiple objectives to be satisfied.
Synthesizing a transducer that translates a set of input-output
examples is already an NP-Complete problem [12]. On top of
that, we also need to handle input-output types and distances.
Our encoding is divided into three parts, one for each ob-
jective, which are presented in the following subsections. This
division makes our encoding very modular and programmable.
In Section IV we show how it can be adapted to different trans-
ducer models and problems. We include a brief description of
the size of the constraint encoding in the extended version.

The transducer we are synthesizing has k (part of the
problem input) states QT = {q0, ..., qk−1}. We often use qinitT

as an alternative for q0, the initial state of T .

We illustrate how our encoding represents a transition
q1

a/bc−−−→ q2. The target state is captured using an uninterpreted
function dst : QT × Σ → QT , e.g., dst(q1,a) = q2. Repre-
senting the output of the transition is trickier because its length
is not known a priori. The output bound l allows us to limit the
number of characters that may appear in the output. We use an
uninterpreted function doutch : QT ×Σ×{0, . . . , l−1} → Σ to
represent each character in the output string; in our example,
doutch (q1,a, 0) = b and doutch (q1,a, 1) = c. Since an output
string’s length can be smaller than l, we use an additional
uninterpreted function doutlen : QT × Σ → {0, . . . , l} to
model the length of a transition’s output; in our example
doutlen(q1,a) = 2. We say an assignment to the above variables
extends to a transducer T for the transducer T obtained by
instantiating δst and δout as described above.

A. Input-output Examples

Goal: For each input output-example s 7→ t ∈ E, T should
translate s to t.

Translating s to the correct output string means that
δout∗T (qinitT , s) = t. Generating constraints that capture this
behavior of T on an example is challenging because we do not
know a priori what parts of t are produced by what steps of the
transducer’s run. Suppose that we need to translate s = a0a1 to
t = b0b1b2. A possible solution is for the transducer to have
the run q0

a0/b0−−−→ q1
a1/b1b2−−−−−→ q2. Another possible solution

might be to instead have q0
a0/b0b1−−−−−→ q1

a1/b2−−−→ q2. Notice that
the two runs traverse the same states but produce different
parts of the output strings at each step. Intuitively, we need a
way to “track” how much output the transducer has produced
before processing the i-th character in the input and what state
it has landed in. For every input example s 7→ t such that
s = a0 · · · an and t = b0 · · · bm, we introduce an uninterpreted
function configs : {0, . . . , n} → {0, . . . ,m} × QT such
that configs(i) = (j, qT) iff after reading a0 · · · ai−1,
the transducer T has produced the output b0 · · · bj−1 and
reached state qT—i.e., δout∗T (q0, a0 · · · ai−1) = b0 · · · bj−1 and
δst∗T (q0, a0 · · · ai−1) = qT .

We describe the constraints that describe the behavior of
configs. Constraint 1 states that a configuration must start
at the initial state and be at position 0 in the output.

configs(0) = (0, qinitT) (1)

Constraint 2 captures how the configuration is updated when
reading the i-th character of the input. For every 0 ≤ i < n,
0 ≤ j < m, c ∈ Σ, and qT ∈ QT :

configs(i) = (j, qT) ∧ ai = c⇒

[
∧

0≤z<l

(doutch (qT , c, z) = bj+z ∨ z ≥ doutlen(qT , c))∧

configs(i+ 1) = (j + doutlen(qT , c),d
st(qT , c))]

(2)

Informally, if the i-th character is c and the transducer has
reached state qT and produced the characters b0 · · · bj−1 so
far, the transition reading c from state qT outputs characters

bj · · · bj+f−1, where f is the output length of the transition.
The next configuration is then (j + f,dst(qT , c)).

Finally, Constraint 3 forces T to be completely done with
generating t when s has been entirely read. Recall that
len(s) = n and len(t) = m.∨

qT∈QT

configs(n) = (m, qT) (3)

The encoding for examples is sound and complete [11].

B. Input-Output Types

Goal: T should satisfy the property {P}T{Q}.

Encoding this property using constraints is challenging
because it requires enforcing that when T reads one of the
(potentially) infinitely many strings in P it always outputs
a string in Q. To solve this problem, we draw inspiration
from how one proves that the property {P}T{Q} holds—
i.e., using a simulation relation that relates runs over P ,
T and Q. Intuitively, if P has read some string w, we
need to be able to encode the behavior of T in terms of
w, i.e., what state of T this transducer is in after reading
w and what output string w′ it produced. Further, we also
need to be able to encode in which state Q would be after
reading the output string w′. We do this by introducing a
function sim: QP × QT × QQ → {0, 1}, which preserves
the following invariant: sim(qP , qT , qQ) holds if there exist
strings w,w′ such that δ∗P (q

init
P , w) = qP , δst∗T (qinitT , w) = qT ,

δout∗T (qinitT , w) = w′, and δ∗Q(q
init
Q , w′) = qQ.

Constraint 4 states the initial condition of the simulation—
i.e., P , T , and Q are in their initial states.

sim(qinitP , qinitT , qinitQ) (4)

Constraint 5 encodes how we advance the simulation rela-
tion for states qP , qT , qQ and for a character c ∈ Σ, using free
variables c0 . . . , cl−1 and q0Q . . . , q

l
Q that are separate for each

combination of qP , qT , qQ, and c:

sim(qP , qT , qQ) ⇒
∧

0≤z≤l

(doutlen(qT , c) = z ⇒

[
∧

0≤x<z

doutch (qT , c, x)=cx]∧

[q0Q=qQ ∧
∧

1≤x<z

qxQ=dQ(q
x−1
Q , cx−1)]∧

sim(δP (qP , c),d
st(qT , c), q

z
Q))

(5)

Intuitively, if sim(qP , qT , qQ) and we read a character c,
P moves to δP (qP , c) and T moves to dst(qP , c). However,
we also need to advance Q and the doutlen symbols produced
by doutch . We hard-code the transition relation δQ in an un-
interpreted function dQ : QQ × Σ → QQ, and apply it to
compute the output state reached when reading the output
string. E.g., if doutlen(qT , c) = 2 and doutch (qT , c, 0) = c0 and
doutch (qT , c, 1) = c1, the next state in Q is dQ(dQ(qQ, c0), c1).

Lastly, Constraint 6 states that if we encounter a string in
L(P)—i.e., P is in a state qP ∈ FP—the relation does not

contain a state qQ /∈ FQ. Since Q is deterministic, this means
that Q accepts T ’s output.∧

qP∈FP

∧
qQ /∈FQ

¬sim(qP , qT , qQ) (6)

The constraint encoding for types is sound and complete [11].

C. Input-output Distance

Goal: The mean edit distance between any input string w
in L(P) and the output string T (w) should not exceed d.

Capturing the edit distance for all the possible inputs in the
language of P and the corresponding outputs produced by the
transducer is challenging because these sets can be infinite.
Furthermore, exactly computing the edit distance between an
input and an output string may involve comparing characters
appearing on different transitions in the transducer run. For
example, consider the transducer shown in Figure 2a and
suppose that we are only interested in strings in the input type
P = a(ba)∗a. The first transition from q0 deletes the a,
therefore making 1 edit. This transducer has a cycle between
states q1 and q2, which can be taken any number of times.
Each iteration, locally, would require that we make 2 edits:
one to change the b to a, and the other to change the a to
b. However, the total number of edits made over any string in
the input type P = a(ab)∗a by this transducer is 1, because
the transducer changes strings of the form a(ba)na to be of
the form (ab)na. Looking at the transitions in isolation, we
are prevented from deducing that the edit distance is always
1 because the first transition delays outputting a character. If
there was no such delay, as is the case for the transducer in
Figure 2b, which is equivalent on the relevant input type to
the one in Figure 2a, then this issue would not arise.

We take inspiration from Benedikt et al. [13] and focus
on the simpler problem of synthesizing a transducer that
has ‘aggregate cost’ that satisfies the given objective.1 For
a transducer T and string s = a0 . . . an, let qinitT

a0/y0−−−−→
q1T . . . q

n
T

an/yn−−−−→ qn+1
T be the run of s on T . Then, the

aggregate cost of T on s is the sum of the edit distances
ed_dist(ai, yi) over all indices 0 ≤ i ≤ n. The mean aggregate
cost of T on s is the aggregate cost divided by len(s), the
length of s. It follows that if T has a mean aggregate cost
lower than some specified d for every string, then it also has
a mean edit distance lower than d for every string.

However, the mean aggregate cost overapproximates the edit
distance, e.g., the transducer in Figure 2a has mean aggregate
cost 1, while the mean edit distance when considering only
strings in P = a(ab)∗a is less than 1/2. For this reason, if
the mean edit distance objective was set to 1/2, our constraint
encoding can only synthesize the transducer in Figure 2b, and
not the equivalent one in Figure 2a.

1Benedikt et al. [13] studied a variant of the problem where the distance
is bounded by some finite constant. Their work shows that when there is a
transducer between two languages that has some bounded global edit distance,
then there is also a transducer that is bounded (but with a different bound)
under a local method of computing the edit distance—i.e., one where the
computation of the edit distance is done transition by transition.

q0start q1

q2

q3
a→ϵ

b→a a→b

a→a

(a) Transducer with delayed output

q0start q1

q2

q3
a→a

b→b a→a

a→ϵ

(b) Transducer without delay

Fig. 2: Transducers with and without delay.

Our encoding is complete for transducers in which the
aggregate cost coincides with the actual edit distance. We
leave the problem of being complete with regards to global
edit distance as an open problem. In fact, we are not even
aware of an algorithm for checking (instead of synthesizing)
whether a transducer satisfies a mean edit distance objective.2

In Section IV-B, we present transducers with lookahead, which
can mitigate this source of incompleteness. Furthermore, our
evaluation shows that using the aggregate cost and enabling
lookahead are both effective techniques in practice.

We can now present our constraints. First, we provide
constraints for the edit distance of individual transitions (recall
that transitions are being synthesized and we therefore need to
compute their edit distances separately). Secondly, we provide
constraints that implicitly compute state invariants to capture
the aggregate cost between input and output strings at various
points in the computation. We are given a rational number d as
an input to the problem, which is the allowed distance bound.

Edit Distance of Individual Transitions. To compute the edit
distance between the input and the output of each transition,
we introduce a function ed: QT × Σ → Z. For a transition
from state qT reading a character c, ed(qT , c) represents
the edit distance between c and δoutT (qT , c). Notice that this
quantity is bounded by the output bound l. The constraints to
encode the value of this function are divided into two cases:
i) the output of the transition contains the input character c
(Constraint 7), ii) the output of the transition does not contain
the input character c (Constraint 8). In both cases, the values
are set via a simple case analysis on whether the length of
the output is 0 (edit distance is 1) or not (the edit distance is
related to the length of the output).

[
∨

0≤z<doutlen(qT ,c)

doutch (qT , c, z) = c] ⇒

[doutlen(qT , c) = 0 ⇒ ed(qT , c) = 1∧
doutlen(qT , c) ̸= 0 ⇒ ed(qT , c) = doutlen(qT , c)− 1]

(7)

[
∧

0≤z<doutlen(qT ,c)

doutch (qT , c, z) ̸= c] ⇒

[doutlen(qT , c) = 0 ⇒ ed(qT , c) = 1∧
doutlen(qT , c) ̸= 0 ⇒ ed(qT , c) = doutlen(qT , c)]

(8)

2The mean edit distance is similar to mean payoff [14], which discounts
a cost by the length of a string and looks at the behavior of a transducer in
the limit. Our distance is different because 1) it looks at finite-length strings,
and 2) it requires computing the edit distance, which cannot be done one
transition at a time.

Edit Distance of Arbitrary Strings. Suppose that T has the
transitions q0

a/a−−→ q1
a/bc−−−→ q2, and the specified mean edit

distance is d = 0.5. The edit distance is 0 for the first transition
and 2 for the second one. For the input string aa, the mean
aggregate cost is 2/2, which means that the specification is
not satisfied. In general, we cannot keep track of every input
string in the input type and look at its length and the number
of edits that were made over it. So, how can we compute
the mean aggregate cost over any input string? The first part
of our solution is to scale the edit distance over a single
transition depending on the specified mean edit distance. This
operation makes it such that an input string is under the edit
distance bound if the sum of the weighted edit distances of
its transitions is ≥ 0. The invariant we need to maintain is
that the sum of the weights at any stage of the run gives us
where we are with regard to the mean aggregate cost. For each
transition we compute the difference between the edit distance
over the transition and the specified mean edit distance d. We
introduce the uninterpreted function wed : QT × Σ → Q,
which stands for weighted edit distance. For a transition at
qT reading a character c, the weighted edit distance is given
by wed(qT , c) = d − ed(qT , c). The sum of the weights of
all transitions tells us the cumulative difference. Going back to
our example, the weighted edit distances of the two transitions
are wed(q0,a) = 0.5 and wed(q1,a) = −1.5, making the
cumulative distance −1 and implying that the specification is
violated. We can now compute the mean edit distance over
a run without keeping track of the length of the run and the
number of edits performed over it.

We still need to compute the weighted edit distance for
every string in the possibly infinite language L(P). Building
on the idea of simulation from the previous section, we
introduce a new function called en : QP × QT × QQ → Q,
which tracks an upper bound on the sum of the distances so
far at that point in the simulation. This function is similar
to a progress measure, which is a type of invariant used
to solve energy games [15], a connection we expand on in
Section VI. In particular, we already know that if there exist
strings w,w′ such that δ∗P (q

init
P , w) = qP , δst∗T (qinitT , w) =

qT , δout∗T (qinitT , w) = w′, and δ∗Q(q
init
Q , w′) = qQ, then

we have sim(qP , qT , qQ). Let this run over T be denoted

by qinitT

a0/y0−−−−→ q1T . . . q
n−1
T

an−1/yn−1−−−−−−−→ qT , where w =
a0 · · · an−1, w′ = y0 · · · yn−1, and qT = qnT . We have that
en(qP , qT , qQ) ≥

∑n−1
i=0 wed(qiT , ai).

The en function is a budget on the number of edits we
can still perform. At the initial states, we start with no ‘initial
credit’ and the energy is 0.

en(qinitP , qinitT , qinitQ) = 0 (9)

Constraint 10 bounds the energy budget according to the
weighted edit distance of a transition by computing the mini-
mum budget required at any point to still satisfy the distance
bound. For each combination of qP , qT , qQ, and c ∈ Σ, the

constraint uses free variables c0, . . . , cl and q0Q, . . . , q
l−1
Q :∧

0≤z<l

(doutlen(qT , c)=z ⇒

[
∧

0≤x<z

doutch (qT , c, x)=cx]∧[q0Q=qQ ∧
∧

1≤x<z

qxQ=dQ(q
x−1
Q , cx−1)]∧

en(qP , qT , qQ) ≥ en(δP (qP , c),d
st(qT , c), q

z
Q)−wed(qT , c))

(10)

In our example, Constraint 10 encodes that the energy at
q0 can be 1 less than that at q1, but that the energy at q1
needs to be 3 greater than at q2 since we need to spend 3 edit
operations over the second transition.

At any point during a run, the transducer is allowed to go
below the mean edit distance and then ‘catch up’ later because
we only care about the edit distance when the transducer has
finished reading a string in L(P). Therefore, when we reach a
final state of P , the transducer should not be in ‘energy debt’.∧

qP∈FP

sim(qP , qT , qQ) ⇒ en(qP , qT , qQ) ≥ 0 (11)

The encoding presented in this section is sound [11].

IV. RICHER MODELS AND SPECIFICATIONS

We extend our technique to more expressive models (Sec-
tions IV-A and IV-B) and show how our synthesis approach
can be used not only to synthesize transducers, but also to
repair them (Section IV-C). Furthermore, in the extended
version of the paper, we describe an encoding of an alternative
distance measure [11].

A. Symbolic Transducers

Symbolic finite automata (s-FA) and transducers (s-FT) ex-
tend their non-symbolic counterparts by allowing transitions to
carry predicates and functions to represent (potentially infinite)
sets of input characters and output strings. Figure 3a shows an
s-FT that extends the escapeQuotes transducer from Figure 1a
to handle alphabetic characters. The bottom transition from
q0 reads a character " (bound to the variable x) and outputs
the string \" (i.e., a \ followed by the character stored in x).
Symbolic finite automata (s-FA) are s-FTs with no outputs. To
simplify our exposition, we focus on s-FAs and s-FTs that only
operate over ASCII characters that are ordered by their codes.
In particular, all of our predicates are unions of intervals over
characters (i.e., x ̸= \ is really the union of intervals [NUL-
[] and []-DEL]); we often use the predicate notation instead
of explicitly writing the intervals for ease of presentation.
Furthermore, we only consider two types of output functions:
constant characters and offset functions of the form x+k that
output the character obtained by taking the input x and adding
a constant k to it—e.g., applying x + (−32) to a lowercase
alphabetic letter gives the corresponding uppercase letter.

In the rest of the section, we show how we can solve the
transducer synthesis problem in the case where P and Q are
s-FAs and the goal is to synthesize an s-FT (instead of an
FT) that meets the given specification. Intuitively, we do this

q0start q1

x ̸= " ∧ x ̸= \ → x

x = " → \x

x = \ → x

x ̸= \ → x

x = \ → x

(a) escapeQuotes s-FT

q0start q1

a → a

" → \"

\ → \

a → a

" → "

\ → \

(b) F (escapeQuotes)

minterms: [x ̸= " ∧ x ̸= \], [x = "], [x = \]
witness char: wit([x ̸= "∧x ̸= \])=a, wit([x = "])=", wit([x = \])=\

(c) Set of minterms and their witness elements

Fig. 3: Example of Finitization

by ‘finitizing’ the alphabet of the now symbolic input-output
types, synthesizing a finite transducer over this alphabet using
the technique presented in Section III, and then extracting an
s-FT from the solution.

Finitizing the Alphabet. The idea of finitizing the alphabet
of s-FAs is a known one [8] and is based on the con-
cept of minterms , which is the set of maximal satisfiable
Boolean combinations of the predicates appearing in the s-
FAs. For an s-FA M , we can define its set of predicates as:
Predicates(M) = {ϕ | q ϕ−→ q′ ∈ δM}. The set of minterms
mterms(M) is the set of satisfiable Boolean combinations of
all the predicates in Predicates(M). For example, for the set
of predicates over the s-FT escapeQuotes in Figure 3a, we have
that mterms(escapeQuotes) = {x ̸= " ∧ x ̸= \, x = ", x =
\}. The reader can learn more about minterms in [8]. We
assign each minterm a representative character, as indicated
in Figure 3c, and then construct a finite automaton from the
resulting finite alphabet Σ. For a character c ∈ Σ, we refer
to its corresponding minterm by mt(c). In the other direction,
for each minterm ψ ∈ minterms(M), we refer to its uniquely
determined representative character by wit(ψ).

For an s-FA M , we denote its corresponding FA over the
alphabet mterms(M) with F (M). Given an s-FA M , the set
of transitions of F (M) is defined as follows:

δF(M)={q wit(ψ)−−−−→ q′|q ϕ−→ q′∧ψ ∈ mterms(M)∧IsSat(ψ∧ϕ)}

This algorithm replaces a transition guarded by a predicate ϕ
in the given s-FA with a set of transitions consisting of the
witnesses of the minterms where ϕ is satisfiable. In interval
arithmetic this is the set of intervals that intersect with the
interval specified by ϕ. The transition from q1 guarded by the
predicate [x ̸= \] in Figure 3a intersects with 2 minterms
[x ̸= " ∧ x ̸= \] and [x = "]. As a result, we see that this
transition is replaced by two transitions in Figure 3b, one that
reads " and another that reads a.

From FTs to s-FTs. Once we have synthesized an FT T ,
we need to extract an s-FT from it. There are many s-FTs
equivalent to a given FT and here we present one way of doing
this conversion which is used in our implementation. Let the
size of an interval I (the number of characters it contains) be
given by size(I), and the offset between 2 intervals I1 and
I2 (i.e. the difference between the least elements of I1 and

I2) be given by offset(I1, I2). Suppose we have a transition

q
c/y0···yn−−−−−−→ q′, where c, yi ∈ Σ. Then, we construct a transition

q
mt(c)/f0···fn−−−−−−−−→ q′, where for each yi, the corresponding

function fi is determined by the following rules (x always
indicates variable bound to the input predicate):

1) If c = yi, then fi = (x), i.e. the identity function.
2) If mt(c) and mt(yi) consist of single intervals I1 and I2,

respectively, such that size(I1) = size(I2) , then fi =
(x+ offset(I1, I2)). For instance, if the input interval is
[a-z] and the output interval is [A-Z], then the output
function is (x+(−32)), which maps lowercase letters to
uppercase ones.

3) Otherwise fi = yi—i.e., the output is a character in the
output minterm.

While our s-FT recovery algorithm is sound, it may apply
case 3 more often than necessary and introduce many con-
stants, therefore yielding a transducer that does not generalize
well to unseen examples. Our evaluation shows that our
technique works well in practice. The proof of soundness of
this algorithm in the extended version [11].

B. Synthesizing Transducers with Lookahead

Deterministic transducers cannot express functions where
the output at a certain transition depends on future characters
in the input. Consider the problem of extracting all substrings
of the form <x> (where x ̸= <) from an input string. This
is the getTags problem from [16]. A deterministic transducer
cannot express this transformation because when it reads <
followed by x it has to output <x if the next character is a >
and nothing otherwise. However, the transducer does not have
access to the next character!

Instead, we extend our technique to handle deterministic
transducers with lookahead, i.e., the ability to look at the string
suffix when reading a symbol. Formally, a Transducer with
Regular Lookahead is a pair (T,R) where T is an FT with
ΣT = QR × Σ, and R is a total DFA with ΣR = Σ. The
transducer T now has another input in its transition function,
although it still only outputs characters from Σ, i.e., δoutT :
QT×(QR×Σ) → Σ, and δstT : QT×(QR×Σ) → QT . The se-
mantics is defined as follows. Given a string w = a0 · · · an, we
define a function rw such that rw(i) = δR(q

init
R , an · · · ai+1).

In other words, rw(i) gives the state reached by R on the
reversed suffix starting at i+1. At each step i, the transducer T
reads the symbol (ai, rw(i)). The extended transition functions
now take as input a lookahead word, which is a sequence of
pairs of lookahead states and characters, i.e., from (QR×Σ)∗.

To synthesize transducers with lookahead, we introduce
uninterpreted functions dR for the transition function of R,
and lookw for the r-values of w on R. We also introduce a
bound kR on the number of states in the lookahead automaton
R (our algorithm has to synthesize both T and R). The
modified constraints needed to encode input-output types and
input-output examples to use lookahead are described in the
extended version of the paper [11]. Part of the transducer with
lookahead we synthesize for the getTags problem is shown

q0start q1
x = <, r0 → ϵ

x ̸= < ∧ x ̸= >, r1 → <x

x ̸= < ∧ x ̸= >, r0 → ϵ

(a) Subset of transitions in T

r0start r1

x ̸= < ∧ x ̸= >

x = <

x = >

x ̸= < ∧ x ̸= >

x = >

x = <

(b) Lookahead automaton R

Fig. 4: Regular lookahead for getTags

in Figure 4. Notice that there are 2 transitions out of q1 for
the same input but different lookahead state: the string <x is
outputted when the lookahead state is r1.

Lookahead and aggregate cost: Lookahead can help rep-
resenting transducers, even deterministic ones, in a way that
has lower aggregate cost—i.e., the aggregate cost better ap-
proximates the actual edit distance. Suppose that we want to
synthesize a transducer that translates the string abc to ab
and the string abd to bd. This translation can be done using
a deterministic transducer with transitions q0

a/ϵ−−→ q1
b/ϵ−−→ q2,

followed by two transitions from q2 that choose the correct
output based on the next character. Such a transducer would
have a high aggregate cost of 4, even though the actual edit
distance is 1. In contrast, using lookahead we can obtain a
transducer that can output each character when reading it; this
transducer will have aggregate cost 1 for either string. We
conjecture that for every transducer T , there always exists an
equivalent transducer with regular lookahead (T ′, R) for which
the edit distance computation for aggregate cost coincides with
the actual edit distance of T .

C. Transducer Repair

In this section, we show how our synthesis technique can
also be used to “repair” buggy transducers. The key idea is
to use the closure properties of automata and transducers—
e.g., closure under union and sequential compositions [8]—
to reduce repair problems to synthesis ones. The ability
to algebraically manipulate transducers and automata is one
of the key aspects that distinguishes our work from other
synthesis works that use domain-specific languages [1], [5].

We describe two settings in which we can repair an incorrect
transducer Tbad: 1. Let {P}Tbad{Q} be an input-output type
violated by Tbad and let OutP (Tbad) be the finite automaton
describing the set of strings Tbad can output when fed inputs in
P (this is computable thanks to closure properties of transduc-
ers). We are interested in the case where OutP (Tbad)\Q ̸= ∅—
i.e., Tbad can produce strings that are not in the output type.
2. Let [s 7→ t] be a set of input-output examples. We are
interested in the case where there is some example s 7→ t such
that Tbad(s) ̸= t.

Repairing from the Input Language. This approach syn-
thesizes a new transducer for the inputs on which Tbad is
incorrect. Using properties of transducers, we can compute
an automaton describing the exact set of inputs Pbad ⊆ P for
which Tbad does not produce an output in Q (see pre-image
computation in [10]). Let restrict(T, L) be the transducer

that behaves as T if the input is in L and does not produce
an output otherwise (closure under restriction [10]). If we
synthesize a transducer T1 with type {Pbad}T1{Q}, then the
transducer restrict(T1, Pbad)∪restrict(Tbad, P\Pbad) satisfies
the desired input-output type (closure under union).

Fault Localization from Examples. We use this technique
when Tbad is incorrect on an example. We can compute a
set of “suspicious” transitions by taking all the transitions
traversed when T (s) ̸= t for some s 7→ t ∈ E (i.e., one of
these transitions is wrong) and removing all the transitions
traversed when T (s) = t for some s 7→ t ∈ E (i.e., transitions
that are likely correct). Essentially, this is a way of identifying
Pbad when Tbad is wrong on some examples. We can also use
this technique to limit the transitions we need to synthesize
when performing repair.

V. EVALUATION

We implemented our technique in a Java tool ASTRA
(Automatic Synthesis of TRAnsducers), which uses Z3 [17] to
solve the generated constraints. We evaluate using a 2.7 GHz
Intel Core i5, RAM 8 GB, with a 300s timeout.

Q1: Can ASTRA synthesize practical transformations?

Benchmarks. Our first set of benchmarks is obtained from
Optician [5], [6], a tool for synthesizing lenses, which are
bidirectional programs used for keeping files in different data
formats synchronized. We adapted 11 of these benchmarks
to work with ASTRA (note that we only synthesize one-
directional transformations), and added one additional bench-
mark extrAcronym2, which is a harder variation (with a larger
input type) of extrAcronym. We excluded benchmarks that
require some memory, e.g., swapping words in a sentence, as
they cannot be modeled with transducers. Our second set of
benchmarks (Miscellaneous) consists of 6 problems we created
based on file transformation tasks (unixToDos, dosToUnix and
CSVSeparator), and s-FTs from the literature–escapeQuotes
from [18], getTags and quicktimeMerger from [16]. All of the
benchmarks require synthesizing s-FTs and getTags requires
synthesizing an s-FT with lookahead (details in Table I).

To generate the examples, we started with the examples that
were used in the original source when available. In 5 cases,
ASTRA synthesized a transducer that was not equivalent to the
one synthesized by Optician. In these cases, we used ASTRA to
synthesize two different transducers that met the specification,
computed a string on which the two transducers differed, and
added the desired output for that string as an example. We
repeated this task until ASTRA yielded the desired transducer
and we report the time for such sets of examples. The ability
to check equivalence of two transducers is yet another reason
why synthesizing transducers is useful. For each benchmark
we chose a mean edit distance of 0.5 when the transformation
could be synthesized with this distance and of 1 otherwise.

Effectiveness of ASTRA. ASTRA can solve 15/18 bench-
marks (13 in <1s and 2 under a minute) and times out on 3
benchmarks where both P and Q are big.

TABLE I: ASTRA’s performance on the synthesis benchmarks. The right-most set of columns gives the synthesis time for ASTRA and Optician
(under 2 different configurations). The middle set of columns gives the sizes of the parameters to the synthesis problem: QP and QQ denote
the number of input and output states, and δP and δQ denote the number of transitions in the input and output types, respectively. A ✗
represents a benchmark that failed. — stands in for data that is not available; this is because we only re-ran Optician on the benchmarks
that were already encoded in its benchmark set, plus a few additional ones for comparing between the tools that we wrote ourselves.

Benchmark QP QQ δP δQ Σ E k l d ASTRA (s) Optician (s) Optician-re (s)

O
pt

ic
ia

n

extrAcronym 6 3 10 3 3 2 1 1 .5 0.11 0.05 ✗
extrAcronym2 6 3 16 3 3 3 2 1 1 0.42 — —
extrNum 15 13 17 12 3 1 1 1 1 0.93 0.05 0.07
extrQuant 4 3 8 5 2 1 2 1 1 0.19 0.09 ✗
normalizeSpaces 7 6 19 10 2 2 2 1 1 0.46 16.64 ✗
extrOdds 15 9 29 13 5 3 3 2 1 15.87 0.12 ✗
capProb 3 3 3 3 2 2 2 1 1 0.05 0.05 ✗
removeLast 6 3 8 3 3 3 2 1 .5 0.21 0.15 0.07
sourceToViews 18 7 26 15 5 3 3 2 1 50.92 0.06 ✗
normalizeNamePos 19 7 35 24 13 1 6 2 1 ✗ 0.05 0.10
titleConverter 22 13 41 41 15 1 3 1 1 ✗ 0.07 ✗
bibtextToReadable 14 11 41 35 12 1 5 1 1 ✗ 0.64 0.15

M
is

ce
lla

ne
ou

s unixToDos 5 7 17 19 4 4 2 2 .5 1.24 — —
dosToUnix 7 5 19 17 4 4 2 1 .5 0.41 — —
CSVSeparator 5 5 9 9 4 1 1 1 1 0.142 — —
escapeQuotes 2 2 6 5 3 5 2 2 1 0.188 ✗ ✗
quicktimeMerger 7 3 9 3 2 2 1 1 .5 0.075 — —
getTags 3 3 9 4 3 5 2 2 1 0.95 ✗ ✗

While the synthesized transducers have at most 3 states, we
note that this is because ASTRA synthesizes total transducers
and then restricts their domains to the input type P . This is
advantageous because synthesizing small total transducers is
easier than synthesizing transducers that require more states to
define the domain. For instance, when we restrict the solution
of extrAcronym2 to its input type, the resulting transducer has
11 states instead of the 2 required by the original solution!

Comparison with Optician. We do not compare ASTRA to
tools that only support input-output examples. Instead, we
compare ASTRA to Optician on the set of benchmarks common
to both tools. Like ASTRA, Optician supports input-output
examples and types, but the types are expressed as regular
expressions. Furthermore, Optician also attempts to produce
a program that minimizes a fixed information theoretical
distance between the input and output types [5].

Optician is faster when the number of variables in the
constraint encoding increases, while ASTRA is faster on the
normalizeSpaces benchmark. Optician, which uses regular ex-
pressions to express the input and output types, does not work
so well with unstructured data. To confirm this trend, we wrote
synthesis tasks for the escapeQuotes and getTags benchmarks
in Optician and it was unable to synthesize those as well—
e.g., escapeQuotes requires replacing every " character with
\".

To further look at the reliance of Optician on regular
expressions, we converted the regular expressions used in
the lens synthesis benchmarks to automata and then back to
regular expressions using a variant of the state elimination
algorithm that acts on character intervals. This results in
regular expressions that are not very concise and might have
redundancies. Optician could only solve 4/11 benchmarks that

it was previously synthesizing (Optician-re in Table I).
Answer to Q1: ASTRA can solve real-world benchmarks

and has performance comparable to that of Optician for similar
tasks. Unlike Optician, ASTRA does not suffer from variations
in how the input and output types are specified.

Q2: Can ASTRA repair transducers in practice?

Benchmarks. We considered the benchmarks in Table II.
The only pre-existing benchmark that we found was es-
capeQuotes, through the interface of the Bek programming
language used for verifying transducers [18]. We generated
11 additional faulty transducers to repair in the following two
ways: (i) Introducing faults in our synthesis benchmarks: We
either replaced the output string of a transition with a constant
character, inserted an extra character, or deleted a transition
altogether. (ii) Incorrect transducers: We intentionally provided
fewer input-output examples and used only example-based
constraints on some of our synthesis benchmarks.

All the benchmarks involve s-FTs. Three benchmarks are
wrong on both input-output types and examples and the rest
are only wrong on examples. Additionally, we note that to
repair a transducer, we need the “right” set of minterms.
Typically, the set of minterms extracted from the transducer
predicates is the right one, but in the case of the escape-
Brackets problems, ASTRA needs a set of custom minterms
we provide manually—i.e., repairing the transducer requires
coming up with a new predicate. We are not aware of another
tool that solves transducer repair problems and so do not show
any comparisons.

Effectiveness of ASTRA. We indicate the number of suspi-
cious transitions identified by our fault localization procedure
(Section IV-C) in the column labeled δTbad . In many cases,

TABLE II: ASTRA’s performance on the repair benchmarks. Default is the case where a new transducer is synthesized for Pbad and Template
is the case where a partial solution to the solver is provided. The δTbad column gives the number of transitions that were localized by the
fault-localization procedure as a fraction of the total number of transitions in the transducer. The other columns that describe the parameters
of the synthesis problem in the default case are the same as for Table I.

Benchmark QP QQ δP δQ Σ E k l d δTbad Default (s) Template (s)
Fa

ul
t

in
je

ct
ed

swapCase1 2 1 6 3 3 2 1 1 1 3/3 0.04 0.02
swapCase2 2 1 4 3 3 2 1 1 1 1/2 ✗ ✗
swapCase3 2 1 6 3 3 2 1 1 1 1/3 0.06 0.05
escapeBrackets1 2 6 16 36 8 4 1 4 4 1/3 0.69 0.42
escapeBrackets2 1 6 1 7 6 5 1 4 4 1/2 ✗ ✗
escapeBrackets3 2 7 8 36 9 5 1 4 4 2/3 1.12 0.34
caesarCipher 2 1 4 2 3 1 1 1 1 1/1 ✗ ✗

Sy
nt

h.

extrAcronym2 11 3 30 3 3 3 2 1 1 12/30 0.59 10.15
capProb 3 3 3 3 2 2 2 1 1 3/3 0.04 0.04
extrQuant 8 3 16 5 2 1 2 1 1 5/10 0.37 0.51
removeLast 6 3 8 3 3 2 2 1 .5 7/8 0.40 1.08
escapeQuotes 3 2 9 5 3 5 2 1 1 3/5 0.17 0.10

ASTRA can detect 50% of the transitions or more as being
likely correct, therefore reducing the space of unknowns.

We compare 2 different ways of solving repair problems
in ASTRA. One uses the repair-from-input approach described
in Section IV-C (Default in Table II). The second approach
involves using a ‘template’, where we supply the constraint
solver with a partial solution to the synthesis problem, based
on the transitions that were localized as potentially buggy
(Template in Table II).

ASTRA can solve 9/12 repair benchmarks (all in less than
1 second). The times using either approach are comparable in
most cases. While one might expect templates to be faster, this
is not always the case because the input-output specification
for the repair transducer is small, but providing a template
requires actually providing a partial solution, which in some
cases happens to involve many constraints.

Answer to Q2: ASTRA can repair transducers with varying
types of bugs.

VI. RELATED WORK

Synthesis of string transformations. String transformations
are one of the main targets of program synthesis. Gulwani
showed they could be synthesized from input-output examples
[1] and introduced the idea of using a DSL to aid synthe-
sis. Optician extended the DSL-based idea to synthesizing
lenses [5], [6], which are programs that transform between
two formats. Optician supports not only examples but also
input-output types. While DSL-based approaches provide good
performance, they are also monolithic as they rely on the
structure of the DSL to search efficiently. ASTRA does not
rely on a DSL and can synthesize string transformations
from complex specifications that cannot be handled by DSL-
based tools. Moreover, transducers allow applying verification
techniques to the synthesized programs (e.g., checking whether
two solutions are equivalent). One limitation of transducers
is that they do not have ‘memory’, and consequently ASTRA
cannot be used for data-transformation tasks where this is
required—e.g., mapping the string Firstname Lastname
to Lastname, Firstname—something Optician can do.

We remark that there exist transducer models with such
capabilities [19] and our work lays the foundations to handle
complex models in the future.

Synthesis of transducers. Benedikt et al. studied the ‘bounded
repair problem’, where the goal is to determine whether there
exists a transducer that maps strings from an input to an
output type using a bounded number of edits [13]. Their
work was the first to identify the relation between solving
such a problem and solving games, an idea we leverage in
this paper. However, their work is not implemented, cannot
handle input-output examples, and therefore shies away from
the source of NP-Completeness. Hamza et al. studied the
problem of synthesizing minimal non-deterministic Mealy ma-
chines (transducers where every transition outputs exactly one
character), from examples [12]. They prove that the problem
of synthesizing such transducers is NP-complete and provide
an algorithm for computing minimal Mealy machines that
are consistent with the input-output examples. ASTRA is a
more general framework that incorporates new specification
mechanisms, e.g., input-output types and distances, and uses
them all together. Mealy machines are also synthesized from
temporal specifications in reactive synthesis and regular model
checking, where they are used to represent parameterized
systems [20], [21]. This setting is orthogonal to ours as the
specification is different and the transducer is again only a
Mealy machine.

The constraint encoding used in ASTRA is inspired by the
encoding presented by Daniel Neider for computing minimal
separating DFA, i.e. a DFA that separates two disjoint regular
languages [22]. ASTRA’s use of weights and energy to specify
a mean edit distance is based on energy games [23], a kind of
2-player infinite game that captures the need for a player to
not exceed some available resource. One way of solving such
games is by defining a progress measure [15]. To determine
whether a game has a winning strategy for one of the players, it
can be checked whether such a progress measure exists in the
game. We showed that the search for such a progress measure
can be encoded as an SMT problem.

REFERENCES

[1] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in PoPL’11, January 26-28, 2011, Austin, Texas, USA,
January 2011.

[2] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, “Fast
and precise sanitizer analysis with bek,” in USENIX Security Symposium,
vol. 58. USENIX, 2012.

[3] L. D’Antoni and M. Veanes, “Static analysis of string encoders and
decoders,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2013, pp. 209–228.

[4] Y. Zhang, A. Albarghouthi, and L. D’Antoni, “Robustness to pro-
grammable string transformations via augmented abstract training,” in
International Conference on Machine Learning. PMLR, 2020, pp.
11 023–11 032.

[5] A. Miltner, S. Maina, K. Fisher, B. C. Pierce, D. Walker, and
S. Zdancewic, “Synthesizing symmetric lenses,” Proceedings of the ACM
on Programming Languages, vol. 3, no. ICFP, pp. 1–28, 2019.

[6] A. Miltner, K. Fisher, B. C. Pierce, D. Walker, and S. Zdancewic, “Syn-
thesizing bijective lenses,” Proceedings of the ACM on Programming
Languages, vol. 2, no. POPL, pp. 1–30, 2017.

[7] M. Mohri, “Finite-state transducers in language and speech processing,”
Computational linguistics, vol. 23, no. 2, pp. 269–311, 1997.

[8] L. D’Antoni and M. Veanes, “Automata modulo theories,” Communica-
tions of the ACM, vol. 64, no. 5, pp. 86–95, 2021.

[9] T. Chen, M. Hague, J. He, D. Hu, A. W. Lin, P. Rümmer, and Z. Wu, “A
decision procedure for path feasibility of string manipulating programs
with integer data type,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2020, pp. 325–
342.

[10] L. D’Antoni and M. Veanes, “The power of symbolic automata and
transducers,” in International Conference on Computer Aided Verifica-
tion. Springer, 2017, pp. 47–67.

[11] A. Grover, R. Ehlers, and L. D’Antoni, “Synthesizing transducers
from complex specifications,” 2022. [Online]. Available: https:
//arxiv.org/abs/2208.05131

[12] J. Hamza and V. Kunčak, “Minimal synthesis of string to string functions
from examples,” in Verification, Model Checking, and Abstract Inter-
pretation, C. Enea and R. Piskac, Eds. Cham: Springer International
Publishing, 2019, pp. 48–69.

[13] M. Benedikt, G. Puppis, and C. Riveros, “Regular repair of specifica-
tions,” in 2011 IEEE 26th Annual Symposium on Logic in Computer
Science. IEEE, 2011, pp. 335–344.

[14] R. Bloem, K. Chatterjee, and B. Jobstmann, “Graph games and reactive
synthesis,” in Handbook of Model Checking, E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem, Eds. Springer, 2018, pp. 921–962.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8_27

[15] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin, “Faster
algorithms for mean-payoff games,” Formal methods in system design,
vol. 38, no. 2, pp. 97–118, 2011.

[16] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner,
“Symbolic finite state transducers: Algorithms and applications,” in
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 137–150.
[Online]. Available: https://doi.org/10.1145/2103656.2103674

[17] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[18] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, “Fast
and precise sanitizer analysis with bek,” http://rise4fun.com/Bek/, 2012.

[19] R. Alur, “Streaming string transducers,” in Logic, Language, Information
and Computation, L. D. Beklemishev and R. de Queiroz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–1.

[20] O. Markgraf, C.-D. Hong, A. W. Lin, M. Najib, and D. Neider,
“Parameterized synthesis with safety properties,” in Asian Symposium
on Programming Languages and Systems. Springer, 2020, pp. 273–
292.

[21] A. W. Lin and P. Rümmer, “Liveness of randomised parameterised
systems under arbitrary schedulers,” in International Conference on
Computer Aided Verification. Springer, 2016, pp. 112–133.

[22] D. Neider, “Computing minimal separating dfas and regular invariants
using sat and smt solvers,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2012, pp. 354–369.

[23] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga,
“Resource interfaces,” in Embedded Software, Third International
Conference, EMSOFT 2003, Philadelphia, PA, USA, October 13-
15, 2003, Proceedings, 2003, pp. 117–133. [Online]. Available:
https://doi.org/10.1007/978-3-540-45212-6_9

https://arxiv.org/abs/2208.05131
https://arxiv.org/abs/2208.05131
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1145/2103656.2103674
http://rise4fun.com/Bek/
https://doi.org/10.1007/978-3-540-45212-6_9

	Introduction
	Transducer Synthesis Problem
	Constraint-based Transducer Synthesis
	Input-output Examples
	Input-Output Types
	Input-output Distance

	Richer Models and Specifications
	Symbolic Transducers
	Synthesizing Transducers with Lookahead
	Transducer Repair

	Evaluation
	Related Work
	References

