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Abstract. The FlexRay standard, developed by a cooperation of lea-
ding companies in the automotive industry, is a robust communication
protocol for distributed components in modern vehicles. In this paper,
we present the first timed automata model of its physical layer protocol,
and we use automatic verification to prove fault tolerance under several
error models and hardware assumptions.
The key challenge in the analysis is that the correctness of the protocol
relies on the interplay of the bit-clock alignment mechanism with the
precise timing behavior of the underlying asynchronous hardware. We
give a general hardware model that is parameterized in low-level timing
details such as hold times and propagation delays. Instantiating this
model for a realistic design from the Nangate Open Cell Library, and
verifying the resulting model using the real-time model checker Uppaal,
we show that the communication system meets, and in fact exceeds, the
fault-tolerance guarantees claimed in the FlexRay specification.

1 Introduction

The safety-critical functionality of modern cars is increasingly implemented in
distributed embedded components that connect through a robust communication
system. Since delays or communication errors in such X-by-wire applications can
cause serious harm, fault tolerance is a key consideration in the design of the
communication protocols.

In this paper, we study the physical layer of the FlexRay protocol [7]. Devel-
oped by the FlexRay Consortium, a cooperation of leading companies including
BMW, Bosch, Daimler, Freescale, General Motors, NXP Semiconductors, and
Volkswagen, FlexRay was first employed in 2006 in the pneumatic damping sys-
tem of BMW’s X5, and fully utilized in 2008 in the BMW 7 Series. The FlexRay
specification was completed in 2009 and is widely expected to become the future
standard for the automotive industry.

The role of the physical layer is to compensate for low-level communica-
tion errors such as glitches, i.e., incorrect transmissions due to electromagnetic
interference and similar effects, and jitter, resulting from clock drift between
asynchronous components. For this purpose, the protocol includes a complicated



voting and bit-clock alignment mechanism, which analyzes a stream of samples,
identifies the boundaries of the individual bit transmissions, and computes the
correct value of the bits.

How robust is the resulting protocol? The FlexRay standard states, somewhat
vaguely, that “the decoding function attempts to enable tolerance of the physical
layer against presence of one glitch in a bit cell when the length of the glitch is less
than or equal to one channel sample clock period,” adding in a footnote that
“there are specific cases where a single glitch cannot be tolerated and others
where two glitches can be tolerated” [7, Sect. 3.2.7]. Clearly, a more precise
characterization of the fault tolerance is desirable. The challenge is, however, that
the correctness of the protocol relies on the interplay of the bit-clock alignment
mechanism with the timing behavior of the asynchronous hardware. A careful
analysis of the fault tolerance must therefore include a detailed timing model of
the underlying hardware.

Previous efforts [4,13,12,9,1] to analyze FlexRay have been based on manual
or semi-automatic verification methods, which make it very difficult to determine
the robustness of the protocol under different error models and hardware config-
urations. We present a new formalization of the FlexRay physical layer protocol,
parameterized in several low-level timing details such as hold times and propa-
gation delays, that is based on timed automata. Because timed automata can be
analyzed fully automatically using model checkers such as Uppaal [3], we can
quickly analyze the model for different settings and track the dependence of the
protocol on hardware and design parameters.

Our analysis provides a detailed picture of the robustness of the FlexRay
physical layer protocol. We show that, for typical hardware parameters, such as
those of a realistic design from the Nangate Open Cell Library [11], FlexRay
tolerates one glitch every four samples. In fact, this tolerance is robust under
variations of the hardware. For example, the protocol tolerates a clock drift
of up to 0.46%, which significantly exceeds the limit of 0.15% described in the
FlexRay standard. While fault tolerance thus holds for a wide range of hardware
configurations, it strongly depends on design parameters like the size of the
voting window: for example, the voting window of five samples, specified in the
standard, allows for up to one glitch every four samples, while an alternative
voting window of three samples would allow for one glitch every three samples.

In the following sections, we give a detailed presentation of the model and
the results of our analysis.

2 Overview

We present a model of the physical layer protocol of the FlexRay co-
ding/decoding unit (CODEC). As illustrated in Fig. 1, our model is structured
into a model of the protocol and a model of the underlying hardware. The pro-
tocol model, which is given in Sect. 3, consists of a sender and a receiver.

We regard the message frames, which are obtained from the next-higher
FlexRay layer and contain data to be transferred as well as protocol related
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Fig. 1. The structure of the model.

information, as simple byte strings independent of their format and content
and call these messages in the following. The sender embeds the message in a
structured bit stream. To introduce redundancy, every bit of this stream is sent
as a bit cell in which the bit value is held for eigth clock cycles.

The receiver in turn reads one value in every clock cycle from the bus (the
so-called samples), removes the redudancy and transmits the message received
to the next-higher layer of the FlexRay protocol. If the received message is not
the same as the message sent, the receiver goes into a designated error state.

The hardware model, which will be described in Sect. 4, describes the under-
lying hardware, including the communication bus and the error model describing
the effects of glitches and jitter.

The scenario considered in our model is the reception of a message from
a sending CODEC of a FlexRay controller that is directly connected to the
receiving CODEC. It is sufficient to consider the scenario of one sending and
one receiving controller, as the number of receiving controllers does not influence
the message transfer process. According to the FlexRay standard [7, Chap. 5],
FlexRay uses a time division multiple access (TDMA) scheme, which excludes
collisions [1]. The correctness of higher protocol levels and the ability of FlexRay
to deal with errors outside the error model are beyond the scope of this work.

2.1 The Error Model

In our model, we consider two types of erroneous behavior: glitches induced by
influences from the environment, and jitter induced by the asynchronous nature
of physical layer protocols.

Glitches. Environmental interferences can always disturb electronic commu-
nication, but smaller disturbances should be compensated in a fault-tolerant
physical layer protocol. A sample taken from the bus might have been replaced
by an arbitrary value. Simply said, it is possible that something different from
the bit that has been sent is received. We model this by nondeterministically
flipping samples in the receiver process. Such a flip is called a glitch [7, Sect.
3.2.2]. If too many glitches occur, the message might be compromised. However,
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the FlexRay physical layer protocol compensates for infrequent glitches. Our er-
ror model is parameterized in the error distance, which gives a lower bound on
the number of correct samples between any pair of samples affected by glitches.

Jitter. In addition to glitches, the communication protocol must deal with
several undesired effects due to the displacement of pulses in the signal. Since
sender and receiver do not share a common oscillator, there may be a drift
between the local oscillators. Additionally, the transition between voltage levels
takes varying amounts of time. All undesired behavior caused by these effects is
called jitter.

2.2 Timed Automata

We describe our model as a network of timed automata [2]. We assume famil-
iarity with timed automata and refer the reader to a Uppaal tutorial [3] for
more background. Each automaton consists of a set of locations, representing
discrete control points, which can be labeled with invariants over clock vari-
ables indicating the condition under which the system can stay at that location.
Transitions can be labeled with broadcast synchronization channels over which a
sender (identified by “!”) can force receivers (identified by “?”) to take a transi-
tion. Also, each transition can have an update expression to set clock or integer
variables, and a guard determining its enabledness. Furthermore, a location can
be marked as committed to force the system to immediately leave the location
before time can pass. To improve the readability of complex models, we cut large
automata into smaller ones.

2.3 Related work

There are several previous formalizations of the FlexRay physical layer proto-
col. Beyer et al. [4] gave the first manual deductive correctness proof. In [12,13],
Schmaltz presented a semi-automatic correctness proof in which the proof obli-
gations are discharged using Isabelle/HOL and the NuSMV model checker. This
proof has also been integrated into larger verified system architectures [9,1].

Vaandrager et al. [14] use Uppaal to derive invariants of the Biphase Mark
physical layer protocol, which are used for semi-automatically proving the for-
mal correctness with the proof assistant PVS. Brown and Pike [6] follow an
alternative approach, where they use the verification tool SAL to increase the
degree of automation in the correctness proofs of the Biphase Mark and the 8N1
protocols. Unlike the FlexRay physical layer protocol, these protocols are not
designed for an unreliable physical environment.

In contrast to all the semi-automatic approaches mentioned above, this paper
presents a fully automatic correctness proof of the FlexRay physical layer proto-
col only using the real-time model checker Uppaal [3]. Furthermore, we consider
a more realistic unreliable physical environment to study the fault tolerance of
the protocol.

In addition to protocol verification, there are several related works in the
more general setting of hardware verification. Bozga et al. [5] verify asynchronous
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circuits with the real-time model checker Kronos, where the low-level timing
behavior of the individual gates is modeled by timed automata. A hierarchical
approach to the verification of asynchronous circuits is described in [15]. By
translating the system model together with a scheduler restricting the temporal
evolution of the system into a communicating sequential processes (CSP) model,
the possible timing behavior of the system is over-approximated to allow the effi-
cient verification using a CSP model checker. The focus of this line of research is
the analysis of asynchronous circuits on a chip, not the communication protocols
considered in this paper.

3 The Protocol Model

We model a scenario in which the sender transmits a formatted bit stream, and
the receiver checks if the format of the stream complies with the standard de-
scribed in [7, Sect. 3.2.1.1] and if all message bits are received correctly. To avoid
unnecessary counter variables that keep track of the current position within the
message, we abstract from the concrete message length: after each transmitted
byte, we let the sender nondeterministically determine whether a further message
byte should follow, thus allowing an arbitrary message length.

3.1 The Sender

The Bit Stream Format. A message is transmitted as a structured stream [7,
Sect. 3.2.1.1] of bit cells as shown in Fig. 2. As stated in Sect. 2.1, in every bit
cell, the bit value is held for eight clock cycles (not shown in the figure).

The start of the stream is the so-called transmission start sequence (TSS),
which consists of a sequence of low bits. It precedes every transmission.

After the TSS, the frame start sequence (FSS) signals the start of a message
transmission. The FSS consists of a single high bit. The receiving controller
accepts a transmission even if the FSS is received zero or two times.

Each message byte is prefixed with a byte start sequence (BSS). The BSS
consists of one high bit followed by one low bit. The high to low transition in
the middle of the BSS is used as a trigger for the bit clock alignment.

At the end of the message, a frame end sequence (FES) is appended. The
FES consists of one low bit followed by one high bit.

High

Low

TSS F
S
S

BSS
1st byte
of data

BSS BSS
last byte
of data

FES

Fig. 2. Format of a message bit stream.

5



TSS FSS (BSShigh)

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
TSScount < TSSlength ∧
samplecounter = 8
samplecounter := 1, Tx := 0,
TSScount++

SenderCLK?
TSScount ≥ TSSlength ∧
samplecounter = 8
samplecounter := 1, Tx := 1

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8
samplecounter := 1, Tx := 1

Fig. 3. Model of the start of the transmission.

Sending the Bit Stream. The sending of the bit stream is modeled by the
automaton shown in Fig. 3. The message is generated nondeterministically as
shown in Fig. 4. Also, the sender nondeterministically determines whether a
particular bit should be verified by the receiver. In this case, the value of the
chosen bit is stored in savedTx and its offset within the current byte is stored
in savedindex1. In our model, the variable End is used to signal to the receiver
that that the bit stream is about to end (shown in Fig. 5).
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SenderCLK?
samplecounter = 8 ∧
bufferindex = 7
samplecounter := 1, Tx := 0

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, Tx := 1,
bufferindex++

SenderCLK?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, Tx := 0,
bufferindex++

SenderCLK?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, savedTx := 1,
Tx := 1, savedindex := bufferindex + 1,
bufferindex++

SenderCLK?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, savedTx := 0,
Tx := 0, savedindex := bufferindex + 1,
bufferindex++

Fig. 4. Model of the transmission of the message bytes.

1 The inital value savedindex = 8 means “no bit to test”.
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(from SendBit)
FESlow FEShigh Done

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8
samplecounter := 1
End := 1, Tx := 1

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8

Fig. 5. Model of the end of the transmission.

3.2 The Receiver

Voting. In order to reconstruct the bit stream sent by the sender, the receiver
takes several samples from each bit cell. The five most recent samples always
form the so-called voting window.2 In each clock cycle, a voted value, i.e., the
value of the majority of the five samples in the voting window, is computed
from these. As the size of the voting window is odd, there will always be a clear
majority.

voted value

1

0

Rxx

1

0

voting window
g
li
tc
h

Fig. 6. Correction of a glitch through majority voting.

As depicted in Fig. 6, infrequently occurring glitches are mostly filtered out
directly. However, if a glitch occurs close to a change in the sample sequence,
it leads to a premature or delayed change of the voted value. More precisely, if
the glitch inverts one of the samples of the new value, it takes one more cycle
until the new value becomes the majority in the voting window. On the other
hand, if the glitch inverts one sample of the old value, the value will change one
cycle too early. Such untimely changes of the voting value may also be the result
of jitter, as described in Sect. 4.2. The errors can also occur in combination, as
shown in Fig. 7.

Our receiver model always maintains the respective previous four samples and
the sample obtained in the current clock cycle. The variable window0 always
holds the newest value. In every cycle, the values of the window variables are
shifted accordingly, as shown in Fig. 8. If the majority of the window variables
contains a 1, VV is set to 1, and to 0 otherwise. The respective previous value of
VV is stored in OldVV.

2 According to the FlexRay standard [7, Sect. 3.2.6], one sample is taken in one sample
clock period, which is derived “from the oscillator clock period directly or by means of
division or multiplication”. Here, a sample clock period of one clock cycle is assumed
in accordance with [4,13,12,1,9].
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Fig. 7. Combination of jitter and glitch.

WaitForSample
C

Vote

ReceiverCLK?
window4 := window3,window3 := window2
window2 := window1,window1 := window0
window0 := Rxx

ValueVoted!
window0 + window1 + window2 + window3 + window4 ≥ 3
VV := 1

ValueVoted!
window0 + window1 + window2 + window3 + window4 < 3
VV := 0

SaveOldVV

ReceiverCLK?
OldVV := VV

Fig. 8. Model of the voting process.

Strobing. From each bit cell, only one voted value is used to reassemble the
bit stream. To avoid choosing values that are affected by glitches, the fifth voted
value (computed from samples from the middle of the bit cell) is taken as the
so-called strobed value.

Bit Clock Alignment. In order to identify the (approximate) boundaries
of the bit cells and thus the strobed values, the receiver keeps the variable
strobecounter synchronized to the stream of received voted values.

The bit clock alignment mechanism makes use of the bit stream format. At
the beginning of the transmission and during the byte start sequences, the first
transition of the voted value from high to low is detected and strobecounter is
reset to 2 for the next voted value. Thus, the second recognized voted value of
the bit cell is considered the second voted value of the cell.

If a combination of clock drift and a glitch interferes with the bit clock
alignment mechanism by delaying the recognition of the high to low transition,
strobecounter will be off by more than 1, thus parts of the next bit cell are also
taken into account when computing the strobed value. This situation is shown
in Fig. 7; recall the delay of two cycles introduced by the voting process. The
bit clock alignment can analogously also happen too early.

As shown in Fig. 9, strobecounter has no default value, but is initialized
nondeterministically. When the new voted value, VV, is 0 and the voted value
from the cycle before, OldVV, is 1, and EnableSyncEdgeDetect enables the bit
clock alignment mechanism, strobecounter is reset to 2, as the received 0 is the
first bit of the new bit cell, and the bit clock alignment mechanism is deactivated
using EnableSyncEdgeDetect.
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When strobecounter has a value of 5 and channel ValueVoted signals that
the voted value for this cycle of the receiver’s clock is reached, VV is chosen as
the value for bstr. Channel Strobed allows other automata to synchronize on
this event in order to use the new bstr value.
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2
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Fig. 9. Model of the strobing process.

Receiving the Bit Stream. When channel Strobed signals that a new value
has been strobed, the receiver checks if it is consistent with the expected format
of the bit stream, as shown in Fig. 10. As soon as a received value is not the
expected one, the error state DECerr is entered.

The received TSS is accepted if it contains at least TSSmin bits. A further bit
of the TSS is accepted if not more than TSSmax bits have been received before.

WaitForCE

C
CheckForCE TSS

C

CheckTSS
FSSBSShigh

C
(CheckFSS)

C
DECerr

S
t
r
o
b
e
d
?

bstr = 0
TSScount := 1

b
s
t
r
=

1

Strobed?

(bstr = 1 ∧ TSScount < TSSmin)∨
(bstr = 0 ∧ TSScount > TSSmax)

bstr = 0∧
TSScount ≤ TSSmax
TSScount++

bstr = 1 ∧ TSScount ≥ TSSmin
EnableSyncEdgeDetect := 1 Strobed?

Fig. 10. Model of the start of the reception.

During the reception of the TSS or after the reception of a message byte, the
variable EnableSyncEdgeDetect is used, as shown in Fig. 11, to enable the bit
clock alignment mechanism. During the reception of a message byte, the number
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of bits received so far within this byte is counted using variable bufferindex.
When savedindex indicates that the current message bit is to be verified, the
received value (stored in bstr) is compared to savedTx. The variable End is
checked to prohibit entering the location Done too early, as shown in Fig. 12.

C (from FSSBSShigh)
CheckFSSBSS
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CheckBSS

BSShigh
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CheckBSSlow BSSlow
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C
DECerr
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0

S
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?

b
s
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r
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1
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0
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x
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S
tr
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bstr = 0

bstr = 1bufferindex := 0

Fig. 11. Model of the reception of the message bytes.

(from CheckFESlow)

FESlow
C

CheckFEShigh
C

Done

C

DECerr

Strobed? bstr = 1 ∧ End = 1

bs
tr

=
0
∨
En
d
=

0

Fig. 12. Model of the end of the reception.

4 The Hardware Model

In FlexRay networks, each controller has a local oscillator that clocks all local
circuits. The individual controllers run asynchronously and communicate via a
shared bus. In our model, we use registers (standard circuits used to persist
values) to simulate the low-level timing behavior of transmitting bit values from
sender to receiver.

Figure 13 gives an overview. The sender begins a transmission of a bit by
storing its value in a register Tx. The bus content is represented as the output of
register Tx, which is connected to a register Rx on the receiver’s side. Following
[4,13,12,9,1], as proposed by [10], we forward the output of register Rx through
a consecutive register Rxx to suppress metastability problems.
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Hardware Model

Clock Clock
Register
Tx

Bus = RxIn

Register
Rx

Rxx

Send Stream Receive Stream

Fig. 13. Overview of the hardware sub-architecture.

4.1 Oscillators

We model the local oscillators of the sender and the receiver as automata that
emit tick -events (SenderCLK and ReceiverCLK) which, in turn, are received
by other automata modeling connected circuits. According to the specification,
distributed oscillators may deviate from the standard rate up to a certain bound
[7, Appendix A.1]. Furthermore, as these oscillators are not started at the same
time, their periods can be shifted arbitrarily. This is modeled by not specifying
a minimum length for the first cycle of the receiver’s oscillator in Fig. 14. Here,
x and y are continuous-valued clock variables.

In our model, we parametrize the length of an ideal clock cycle (which is the
same for each controller) by CYCLE. To model the deviation, we use a parameter
DEVIATION. This gives us a lower and an upper bound for tick-events:

CYCLE MIN = CYCLE− DEVIATION

2
and CYCLE MAX = CYCLE+

DEVIATION

2
.

x ≤ CYCLE MAX

SenderCLK!
x ≥ CYCLE MIN
x := 0

y ≤ CYCLE MAX y ≤ CYCLE MAX

ReceiverCLK!
y := 0

ReceiverCLK!
y ≥ CYCLE MIN
y := 0

Fig. 14. Oscillators for sender and receiver.

4.2 Registers

Following the setting of [4,13,12,9,1], we assume a register semantics to model the
timing behavior of the bus which connects the sender and the receiver. Before we
come to the actual transmission of bit values via the bus, we first give a general
description of the low-level timing behavior of registers.

Register Semantics. The behavior of a particular register hardware is de-
scribed in terms of the following parameters:

– SETUP (HOLD) is the setup (hold) time, i.e., the time that the value on the
input of a register is required to be stable before (after) the occurrence of a
tick-event;
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– PMIN (PMAX, where PMIN ≤ PMAX), is the minimal (maximal) propagation
delay, i.e., the minimal (maximal) time after which a register changes its
output to an undefined value (to the new value) after the occurrence of a
tick-event.

The register content represents a particular Boolean value using voltage levels:
A value below a certain voltage level is considered as 0 and a voltage above a
certain level is considered as 1. However, there is a certain range of voltage levels
between the two thresholds that cannot be interpreted as any Boolean value.

Fig. 15 illustrates a scenario in which first a register’s input I and, after a
tick-event, also its output R changes from X to Y . Here, τ refers to the time
between two consecutive tick events and Ω indicates an undefined state of the
register’s output.

R

I

tick

X Y

ΩX Y

PMIN

PMAX

τ

PMIN− HOLD τ − PMAX− SETUP

SETUP

HOLD

Fig. 15. Value change scenario of a register R.

We assume that the unknown value is stable before τ − SETUP, i.e., before
it could violate the setup times of connected registers in the next cycle. In the
FlexRay context, for a particular controller, all inputs of registers are connected
to circuits that use the same oscillator as the registers. Hence, according to [8,
Sect. 5.2], we assume that all local inputs are stable.

More generally, let R(t) and I(t) be a register’s output and input at a point
of time t, respectively, and let T be the point of time of a tick event, told =
T − τ + PMAX, and tnext = T + τ + PMIN. Furthermore, let there be a point of
time t′ where the register’s input changes, i.e., T − SETUP ≤ t′ ≤ T + HOLD such
that I(t′) 6= R(told). Then, the output of a register at time t, told ≤ t ≤ tnext , is
formally defined as

R(t) =


R(told) told ≤ t ≤ T + PMIN,

Ω T + PMIN < t < T + PMAX,

X T + PMAX ≤ t ≤ tnext ,

where X =

{
I(T ) if ∀t′.(T − SETUP ≤ t′ ≤ T + HOLD)⇒ (I(t′) = I(T )),

Ω otherwise.
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Model of the Bus. Figure 16 shows the automaton modeling the transmission
of a bit value according to the register semantics defined in the beginning of this
section. Recall the structure of the hardware sub-architecture shown in Fig. 13.
In our model, we represent register Tx’s content by a variable Tx, and register
Rx’s input (which also represents the bus’ content) by a variable RxIn. As the
bus value is high whenever it is idle [7, Sect. 3.2.4], RxIn is initialized with 1.

At every tick of the sender’s clock, the variable Tx is checked: if the sender is
still writing the same value to the bus, nothing changes, but if the sender tries to
write a different value to the bus, RxIn changes its value. Here, we represent an
undefined bus content by a value of 2 for RxIn, and use the parameters HLMIN,
HLMAX, LHMIN, and LHMAX to model the delays induced by the hardware: As a
conservative approximation, we assume

HLMIN = LHMIN = PMIN and HLMAX = LHMAX = PMAX.

StableHIGH
C

CheckForLOW

x ≤ HLMIN

ChangeToLOW

x ≤ HLMAX + SETUP

UnstableLOW

StableLOW
C

CheckForHIGH

x ≤ LHMIN

ChangeToHIGH

x ≤ LHMAX + SETUP

UnstableHIGH

SenderCLK?

Tx = 1

Tx = 0
x ≥ HLMIN
RxIn := 2

x ≥ LHMAX + SETUP
RxIn := 0

SenderCLK?

Tx = 0

Tx = 1
x ≥ LHMIN
RxIn := 2

x ≥ LHMAX + SETUP
RxIn := 1

Fig. 16. Model of the bus.

Model of the Receiving Register. Figure 17 shows the automata modeling
the sampling process on the receiver’s side. The receiver samples a value from
the bus using the register Rx. After exactly HOLD time units following a tick-
event, we update Rx either (1) nondeterministically with 1 or 0 if Rx’s input
RxIn changes or is undefined, or (2) with RxIn otherwise.

Furthermore, for modeling glitches, we introduce a variable lasterror that
counts the number of samples without a glitch. Whenever lasterror ≥ ERRDIST,
the sampling process nondeterministically decides whether the current sample is
affected by a glitch.

5 Model Checking the FlexRay Physical Layer Protocol

In our analysis, we fix values for the model parameters and check several correct-
ness properties (shown in Table 1) using the real-time model checker Uppaal [3].
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WaitForClocktick TryToSample

y ≤ HOLD

ReceiverCLK?
lasterror ≥ ERRDIST
OldRxIn := RxIn

ReceiverCLK?
lasterror ≥ ERRDIST
OldRxIn := 2, lasterror := 0

ReceiverCLK?
lasterror < ERRDIST
OldRxIn := RxIn, lasterror++

y ≥ HOLD ∧ RxIn 6= 2 ∧ OldRxIn = RxIn
Rx := RxIn

y ≥ HOLD ∧
(
OldRxIn 6= RxIn ∨ RxIn = 2

)
Rx := 1

y ≥ HOLD ∧
(
OldRxIn 6= RxIn ∨ RxIn = 2

)
Rx := 0

ConsecutiveRegisterRxx

ReceiverCLK?
Rxx := Rx

Fig. 17. Model of the sampling process.

In a first analysis, we use conservative approximations based on [7,11], which are
listed in Table 2(a). We globally assume a CPU frequency of 80MHz 3.

Table 1. Satisfied correctness properties and corresponding running times of
Uppaal on a computer with an AMD Opteron 2.6 GHz and 4 GB RAM.

Property MC Time

A<> Receiver Control.TSS 0.65 sec
It is always the case that the reception of the bit stream eventu-
ally starts.

A<> Receiver Control.CheckFESlow 7624.90 sec
It is always the case that the first byte of a message is eventually
correctly received.

A[] !Receiver Control.DECerr 73.08 sec
Invariantly, the received bit stream is in the correct format and
the received message is correct.

A[] (!Deadlock || Receiver Control.Done) 136.47 sec
Invariantly, there is no deadlock before the message is completely
received.

We initially assume an error distance of four which corresponds to one glitch
in a voting window. This intuitive choice is overly pessimistic: in fact, the exper-
iments show that for the standard parameters, we can tolerate an error distance
of three without violating any correctness property.

The impact of changing the hardware parameters PMIN, PMAX, or DEVIATION
on the amount of tolerable glitches (such that the properties from Table 1 are
still preserved) is shown in Table 2(b). Interestingly, this analysis demonstrates
the robustness of the FlexRay physical layer protocol even for more pessimistic
hardware assumptions: beyond our conservative choice of the parameters, there
is still a comfortable safety margin for reasonable error models.

3 Note that 80MHz corresponds to an ideal clock cycle. Recall that every actual clock
cycle of a CPU may deviate up to a certain rate, defined by DEVIATION.
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Table 2. Standard values based on conservative approximations of the parame-
ters taken from the FlexRay standard [7] and the Nangate Open Cell Library [11],
as well as the impact of changed parameters on the tolerable glitches. Here, “1
out of x” stands for “at most 1 glitch in x consecutive samples” and thus an
error distance of x− 1, and “at most y” means “at most y glitches in the overall
stream at arbitrary positions”.

(a) Standard parameter values.

Parameter Value Corresponds to

CYCLE 10000 1
80MHz

= 12.5ns
DEVIATION 30 ±0.15 %
SETUP 368 460 ps
HOLD 1160 1450 ps
PMIN 12 15 ps
PMAX 1160 1450 ps
ERRDIST 4 1 out of 5

(b) Changed parameter values.

Changed parameter Tolerable glitches

PMAX− PMIN ≤ 6086 1 out of 4
PMAX− PMIN ≤ 6086 at most 2
PMAX− PMIN ≤ 9616 at most 1

DEVIATION ≤ 92 1 out of 4
DEVIATION ≤ 92 at most 2
DEVIATION ≤ 218 at most 1
DEVIATION ≤ 348 none

Voting window size = 3 1 out of 3
Voting window size = 5 1 out of 4
Voting window size = 7 1 out of 5
Voting window size = 9 1 out of 6

With slightly more elaborate adjustments to the automaton from Fig. 17, we
also investigate an error model with two arbitrary glitches within every sequence
of samples of a certain length. For instance, assuming the standard parameters
from Table 2(a), it turns out that two glitches in a sequence of up to 82 samples
lead to a violation of the correctness properties. The impact of changing the size
of the voting window is shown in the last four rows of Table 2(b). Here, the error
distance increases linearly in the size of the window.

6 Conclusion

In this paper, we have demonstrated the use of automatic verification to analyze
the fault tolerance of a complex real-time protocol under variations of the design
parameters, the error model, and the hardware parameters. Beyond proving that
the physical layer protocol meets the fault tolerance requirements claimed in the
FlexRay specification, our analysis gives a detailed picture of the impact the
different parameters have on the robustness of the protocol.

An a posteriori analysis, as carried out in this paper, is helpful to understand
the importance of individual design choices and hardware requirements in an
established protocol, and to identify requirements that are too conservative and
can therefore be relaxed. An interesting direction for future research might be to
carry out the analysis a priori, exploring the design space of an as yet unfinished
protocol: model checking variations of the protocol on a parameterized hardware
model, like the one presented in this paper, can help the designer make safe and
robust choices.
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