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ABSTRACT
We consider the synthesis of reactive systems that are robust
against intermittent violations of their environment assump-
tions. Such assumptions are needed to allow many systems
that work in a larger context to fulfill their tasks. Yet, due
to glitches in hardware or exceptional operating conditions,
these assumptions do not always hold in the field. Manually
constructed systems often exhibit error-resilience and can
continue to work correctly in such cases. With the develop-
ment cycles of reactive systems becoming shorter, and thus
reactive synthesis becoming an increasingly suitable alter-
native to the manual design of such systems, automatically
synthesized systems are also expected to feature such resili-
ence.

The framework for achieving this goal that we present in
this paper builds on generalized reactivity(1) synthesis, a
synthesis approach that is well-known to be scalable enough
for many practical applications. We show how, starting from
a specification that is supported by this synthesis approach,
we can modify it in order to use a standard generalized reac-
tivity(1) synthesis procedure to find error-resilient systems.
As an added benefit, this approach allows exploring the pos-
sible trade-offs in error resilience that a system designer has
to make, and to give the designer a list of all Pareto-optimal
implementations.

1. INTRODUCTION
Automatically synthesizing reactive systems from their

specifications is an attractive alternative to constructing
these by hand. Even when a complete specification is not
available, formal synthesis is a useful approach to analyze
the specifications for the parts of the system to be con-
structed and allows to explore the design alternatives in a
structured way.

To fully benefit from synthesis technology, measures have
to be taken to ensure that the implementations computed
in the process are of good quality [1, 7, 11]. Example qual-
ity criteria include energy consumption, size of the imple-
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mentation, and the resilience of the implementation against
changes in the conditions under which the system operates.
Intuitively, the latter criterion means that a system should
work as well as possible in scenarios in which the assump-
tions about its environment are violated. In other words,
the system shall degrade gracefully, and all safety-relevant
properties of the system should be fulfilled “whenever” pos-
sible.

While it would obviously be best if a synthesized system
does not rely on any environment assumptions being sat-
isfied, this is typically not possible. For example, if we re-
quire a robot to go from one point in a workspace to another
point and there is an obstacle in between, then the assump-
tion that the position of the robot is updated according to
its actions (move left, move right, etc.) needs to be made.
Manually constructed reactive system controllers typically
only rely on these environment assumptions being satisfied
in situations in which they are crucially needed. A reactive
synthesis procedure on the other hand will typically com-
pute a controller that lets it come very close to the obstacle,
and thus the resulting controller cannot even tolerate a sin-
gle “glitch” in the environment assumptions. The reason
for this is by default, reactive synthesis procedures do not
optimize towards controller behavior that allows for error-
resilience (such as staying away from an obstacle as far as
possible). Even worse, once an assumption is violated, the
system is free to behave in an arbitrary manner and in par-
ticular, possibly fail to fulfill its requirements. The violation
of assumptions in the field does also not necessarily mean
that they have been modeled incorrectly, as typically not
all eventualities can be modeled correctly and precisely, like
components of the robot breaking at runtime or dirt on sen-
sors leading to imperfect measurements.

In this paper, we solve the problem of synthesizing error-
resilient systems from specifications in temporal logic. We
concentrate on the generalized reactivity(1) fragment of
linear-time temporal logic (LTL), for which an efficient and
symbolic synthesis algorithm is known [4]. We show how
to add the requirement of being k-resilient [10] to such a
specification. That is the system has to tolerate arbitrarily
many violations of safety assumptions (“glitches”), as long
as in between every k such glitches, there is a long enough
period in which no glitch occurs so that the system can re-
cover from the earlier k glitches. By not exceeding the class
of generalized reactivity(1) specification in this process, we
ensure that also the synthesis problem for the resulting spec-
ification can be solved efficiently.



Automatically synthesizing error-resilient systems enables
to effectively perform design space exploration: we compute
(1) which assumptions need to be seen as strict, i.e., need
to be satisfied all of the time, (2) for which assumptions ar-
bitrarily many glitches can be tolerated, and (3) for which
assumption some glitches can be tolerated, and whose vio-
lations should count towards the value of k. We present an
exploration algorithm that searches for all Pareto-optimal
assignments of the assumptions to these categories that rep-
resent implementable error-resilience guarantees. Searching
for these optimal solutions gives the system designer the in-
sight of what the specifications imply with respect to the
system’s resilience and thus to select the most reasonable
solution for the practical application in mind, without the
need to formalize the preferences in advance. Additionally,
it allows the system designer to state the assumptions in a
very conservative manner whenever a precise model of the
assumptions cannot be given. In the robot example, we
might for instance know that dislocations of the robot do
not happen “very often,” but a more precise characteriza-
tion of the environment cannot be given. By assuming that
these never happen, and applying error-resilient synthesis,
we can explore the possible error-resilience levels with our
synthesis approach and by picking the most suitable one
save the effort to analyze the possible environment behavior
more closely in order to obtain a most suitable controller.

The rest of the paper is structured as follows: In the next
section, we recall some preliminaries. Then, we formally
describe the error-resilient system synthesis problem in Sec-
tion 3, and explain how a generalized reactivity(1) specifi-
cation can be modified in order to add error-resilience as a
requirement in Section 4. We state how to search for all
Pareto-optimal solutions in Section 5 and show the useful-
ness of our new techniques experimentally in Section 6. Af-
terwards, we discuss related work in Section 7 and conclude
with a summary in Section 8.

2. PRELIMINARIES
A controller is a reactive system with an interface I =

(API ,APO), where API is the set of input signals and APO is
the set of output signals. Given an interface I, we describe a
controller as a finite-state machineM = (S,API ,APO, s0, δ)
for which S is a finite set of states, s0 ∈ S is the initial state,
and δ : S × 2API → S × 2APO is the transition function. We
say that some word w = (wI

0 , w
O
0 )(wI

1 , w
O
1 )(wI

2 , w
O
2 ) . . . ∈

(2API × 2APO )ω is a trace of M if there exists a run π =
π0π1 . . . ∈ Sω such that π0 = s0 and for every i ∈ N, we
have (πi+1, w

O
i ) = δ(πi, w

I
i ). We call a sequence of states

s1s2 . . . sn ∈ S a loop in M if s1 = sn and for all i ∈
{1, . . . , n− 1}, there exist x ⊆ API and y ⊆ APO such that
(si+1, y) = δ(si, x).

In reactive synthesis, we compute a finite-state machine
for which all of its traces satisfy some specification, which
we describe in temporal logic. We consider a subset of linear-
time temporal logic (LTL) [13] in this paper. Formulas in
LTL are evaluated at positions i in a word w = w0w1 . . . ∈
(2AP)ω over a set of atomic propositions AP. In addition to
the standard Boolean operators, we have the temporal op-
erators G, F, and X that connect the truth values at some
position in a word to those at future positions. Formally,
we have (1) w, i |= Xφ iff w, (i + 1) |= φ, (2) w, i |= Gφ iff
∀j ≥ i : w, j |= φ, and (3) w, i |= Fφ iff ∃j ≥ i : w, j |= φ (for
every trace w, index i and sub-formula φ). The until oper-

ator of LTL is not used in this paper and not defined here.
We say that a finite-state machineM = (S,API ,APO, s0, δ)
satisfies some LTL specification ψ if and only if all of its
traces (over AP = API ∪ APO) satisfy the LTL formula at
position i = 0. Given an interface I = (API ,APO) and
an LTL specification ψ over the set of atomic propositions
API ∪APO, the synthesis problem is to decide whether there
exists a finite-state machine M = (S,API ,APO, s0, δ) that
satisfies ψ, and to compute such a finite-state machine in
case of a positive answer.

A particularly interesting sub-class of LTL for the purpose
of synthesis is the class of generalized reactivity(1) specifi-
cations [4], which is abbreviated as GR(1) in the following.
Such specifications are of the form

ψ = (ψa
i ∧ ψa

s ∧ ψa
l )→ (ψg

i ∧ ψ
g
s ∧ ψg

l ),

where the parts left of the implication operator are the as-
sumptions and the parts right of the implication operator
are the guarantees. In both of these property groups, we
have initialization properties (ψa

i and ψg
i ), which are free

of temporal operators, safety properties (ψa
s and ψg

s ), which
are of the form Gφ for some LTL sub-formula φ in which the
only temporal operator allowed is X, and liveness properties
(ψa

l and ψg
l ), which are of the form GFφ for some LTL sub-

formula φ in which the only temporal operator allowed is
X. In all of these properties, the X operator is not allowed
to be nested. In ψa

s and ψa
l , variables from APO may not

occur within the scope of an X operator. Synthesizing from
GR(1) specifications can be performed in time exponential
in |API |+ |APO|, and tools that circumvent this worst-case
computation time for many practical cases have been devel-
oped [12, 6]. It must be noted however that these typically
implement a strict semantics of GR(1), where in order for
a system to be considered to satisfy ψ, we have that ψg

s

may only be violated after ψa
s has already been violated.

This choice has no conceptual reasons – a specification for
the classical Boolean implication semantics between the as-
sumptions and guarantees can be encoded into one for the
strict semantics with a minor blow-up of adding only one
atomic proposition. For more details, the reader is referred
to Bloem et al. [4]. In contrast to older GR(1) synthesis
literature, we also allow the next-time operator in liveness
assumptions and guarantees, which has been shown to only
require a minor change to the standard GR(1) synthesis pro-
cedure [14].

3. DEFINING ERROR-RESILIENCE
In this section, we introduce a series of notions of resili-

ence and state the main problems solved in the subsequent
sections. Let AP be the set of signals of a reactive system
and ψ = ψa → ψg = (ψa

i ∧ ψa
s ∧ ψa

l ) → (ψa
i ∧ ψa

s ∧ ψa
l )

be its specification. Recall that ψa
s is a conjunction of basic

safety properties, i.e., we have ψa
s = ψa

s,1 ∧ . . . ∧ ψa
s,n with

ψa
s,j = Gφa

s,j for all j ∈ {1, . . . , n}.

3.1 Uniform Error-Resilience
Let w = w0w1w2 . . . ∈ (2AP)ω be a trace of a reactive

system. We say that we have an intermittent assumption
violation at some position i ∈ N for property ψa

s,j = Gφa
s,j

in the trace if wi−1wiw
′ 6|= φa

sj for every w′ ∈ (2AP)ω. For
simplicity, let us also call intermittent assumption violations
glitches. We say that l ∈ N glitches occur at some position
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Figure 1: Graphical description of a (k, b)-sane input
stream for some system and (k, b) = (3, 6); glitches
along the system’s execution are marked by circles.

i ∈ N in w if the maximal subset P ⊆ {ψa
s,1, . . . , ψ

a
s,n} such

that for every ψ′ ∈ P , we have a glitch for ψ′ at position i,
has cardinality l.

Definition 1. Let (ψa
i ∧ψa

s ∧ψa
l )→ ψg be a specification

for some interface I = (API ,APO) and k, b ∈ N. We say
that some trace w is (k, b)-sane if in w,

1. there are infinitely many sequences of at least b con-
secutive steps in which no glitch occurs,

2. in between every of these glitch-free sequences, there
are at most k glitches, and

3. there are only finitely many glitches in total.
We say that a reactive system M with the interface I is
(k, b)-resilient if every of its traces satisfies ψg if it is (k, b)-
sane and satisfies ψa

i and ψa
l .

Figure 1 explains the concept graphically. Note that our
definition of glitches is concerned with both the input and
output part of a trace, which may be a bit unintuitive at
first. It allows us to define the allowed next input signal
valuations in the safety assumptions based on the system’s
previous output, however.

Intuitively, if a system is (k, b)-resilient, then it can from
time to time tolerate a sequence of up to k intermittent as-
sumption violations (not necessarily consecutive), provided
that there are at least b steps to recover from the glitches
afterwards. The restriction to finitely many glitches ensures
that in cases in which the environment of a reactive system
uses the glitches to prevent the system from fulfilling its
liveness objectives, the system does not need to satisfy its
guarantees. Since the system may have to wait for progress
with respect to the environment satisfying its liveness as-
sumptions before it can make progress towards satisfying
the liveness guarantees, a recovery period of b steps may be
insufficient for any value of b in the case of infinitely many
glitches. The restriction to finitely many glitches does not
affect the idea of error resilience, however, as a system can
never know when a glitch has been the last one. Thus, it
always has to return to normal operation mode after some
finite number of steps and has to work towards satisfying
its liveness guarantees even in the case of infinitely many
glitches.

Note that we excluded the initialization assumptions and
the liveness assumptions from being considered in the defi-
nition of error-resilience. The reason is simply that we want
to make the system under design robust against intermittent
violations of the assumptions. Liveness and initialization
assumptions cannot be violated temporarily. If we are able
to synthesize a reactive system even for the case that one
such assumption is violated, then it is not needed. It can
be assumed that in a formal development process of a re-
active system, in which a specification is built step-by-step,
such an assumption would never be added, so not consid-

ering this case does not restrict the practical impact of our
error-resilient synthesis techniques to follow.

We are now ready to define the error-resilient synthesis
problems.

Definition 2. Given a specification ψ = ψa → ψg, an
interface I = (API ,APO), and values k, b ∈ N, we define
the reactive (k, b)-resilient synthesis problem for ψ and I
to check if there exists a (k, b)-resilient system for I that
satisfies ψ, and to compute such a system whenever it exists.
In the reactive k-resilient synthesis problem [10] for I and
ψ, we want to find a system for I whose traces satisfy ψ and
that is (k, b)-resilient for some b ∈ N, if it exists.

3.2 Mixed Error-Resilience
The k-resilience definition introduced above treats all

(safety) assumptions alike. In practical specifications, they
however often differ in how likely they are to be violated at
runtime. For example, for a robot, the assumption that the
sensed position does not jump from one end of the workspace
to another one is less likely to be violated compared to the
assumption that the robot position is always updated pre-
cisely according to the actuators involved, as people can
bump into the robot and thus cause small dislocations. As
we cannot expect the robot to work correctly if people bump
into it too often, this assumption is nevertheless justified and
typically also needed. To account for these different likeli-
hoods of intermittent assumption violations, we now refine
the idea of k-resilience accordingly.

Definition 3. Let ψa
s = ψa

s,1 ∧ . . . ∧ ψa
s,n be the set of

safety assumptions of a given specification. We define a re-
silience signature for ψa

s to be a function s : {1, . . . , n} →
{any , some,none}.

The idea of a resilience signature is that it augments a reac-
tive system specification with information about the relative
significance of the violations in its safety assumptions with
respect to its resilience. More specifically, it classifies the
assumptions as those for which (1) any number of glitches
shall be tolerated, (2) a particular pre-specified number of
glitches shall be tolerated, or (3) no glitches are guaranteed
to be tolerated. Only case (2) shall count toward the value
of k that we define resilience over.

Definition 4. Let (ψa
i ∧ ψa

s ∧ ψa
l ) → ψg be a specifica-

tion for some interface I = (API ,APO), s be a resilience
signature for ψa

s , and k, b ∈ N. We say that some trace w is
(s, k, b)-sane if in w,

1. there are infinitely many sequences of at least b con-
secutive steps in which no glitch occurs,

2. no glitches occur at all for all safety assumptions ψa
s,j

with s(ψa
s,j) = none,

3. in between every of these glitch-free sequences, there
are at most k glitches of safety assumptions ψa

s,j with
s(ψa

s,j) = some, and
4. there are only finitely many glitches in total.

We say that a reactive systemM is (s, k, b)-resilient if every
trace of the system satisfies ψg if the trace is (s, k, b)-sane
and satisfies ψa

i and ψa
l .

The resilient synthesis problem can now be modified accord-
ingly as follows.



Definition 5. Given a specification ψ = ψa → ψg, an
interface I = (API ,APO), values b, k ∈ N, and some resili-
ence signature s, we define the reactive (s, k, b)-resilient syn-
thesis problem for ψ and I to check if there exists a (s, k, b)-
resilient system for I that satisfies ψ, and to compute such
a system whenever it exists. The (s, k)-resilient synthesis
problem for ψ and I is to decide whether for some b ∈ N, a
(s, k, b)-resilient system exists and to find such a system.

For the brevity of presentation, we only consider the (s, k)-
resilient synthesis problem in the following. This choice is
motivated by the fact that in practice, glitches often come in
bursts, so optimizing towards the maximum possible length
of such bursts should have the highest priority.

To simplify the presentation of examples in the follow-
ing, we will also just list the values that s maps to when-
ever the assumption list is fixed. For instance, we will write
(some,none, 2) instead of ({1 7→ some, 2 7→ none}, 2). For
some fixed specification and a fixed interface, we will also
call a resilience signature (s, k) realizable if there exists a
(s, k)-resilient implementation for the specification with the
defined interface.

4. SYNTHESIZING ERROR-RESILIENT
SYSTEMS

We now show how given a specification ψ = ψa → ψg,
an interface I = (API ,APO), a resilience signature s for ψ
and a value k ∈ N, we can perform (s, k)-resilient synthesis.
While ψ and I are necessarily given in any reactive synthesis
problem, the latter two describe how error-resilient we want
our implementation to be. We show in the next section how
to optimize over these, i.e., find the strongest possible values
for s and k that are implementable. For the scope of this
section, we assume them to be given.

The following construction shows how to modify a GR(1)
specification in order to enforce (s, k)-resilience of the im-
plementation along with satisfying the specification. As a
consequence, for synthesizing an (s, k)-resilient implemen-
tation, we can modify the specification (automatically) and
use a standard GR(1) synthesis tool.

For k ∈ N, we define APk to represent a set of signals
{x0, . . . , xm} such that m = dlog2(k + 1)e, and we denote
the binary encoding of a number 0 ≤ j ≤ k into APk as LjM.
We also call APk the counter signals.

Definition 6 (Modified Specification). Given ψ
with the set of safety assumptions {ψa

s,1, . . . , ψ
a
s,n}, I, s

and k, we define the modified interface I′ and the modified
specification ψ′ as follows:

I′ = (API ,APO ∪ APk) and

ψ′ = (ψa
i ∧ ψ′as ∧ ψ′al )→ (ψ′gi ∧ ψ

′g
s ∧ ψ′gl )

with

ψ′as =
∧

j∈{1,...,n},s(j)=none

Gφa
s,j

∧
∧

h∈{0,...,k},
D⊆{1,...,n},
|D|=h+1,

∀j∈D:s(j)=some

G

(
LhM→

∨
j∈D

φa
s,j

)
,

ψ′al =
∧

j∈{1,...,n′}

GF(¬LkM ∨ φa
l,j)

for ψa
l = GFφa

l,1 ∧ . . . ∧ GFφa
l,n′ ,

ψ′gi = ψg
i ∧ LkM,

ψ′gs = ψg
s ∧

∧
h∈{0,...,k},
D⊆{1,...,n},
|D|≤h,

∀j∈D:s(j)=some

G

LhM ∧
∧
j /∈D

φa
s,j → X

∨
h′≥h−|D|

Lh′M

 ,

ψ′gl = GF

(
LkM ∨

∨
j∈{1,...,n}

¬φa
s,j

)
∧

∧
j′∈{1,...,n′}

GF

(
φs
l,j′ ∨

∨
j∈{1,...,n}

¬φa
s,j

)
for ψg

l = GFφg
l,1 ∧ . . . ∧ GFφg

l,n′ .

Intuitively, when constructing a modified specification, we
add a set of output signals that the system can use to de-
clare how often assumption violations can be tolerated in
the near future. The modified formula ψ′gi describes that
the system should start with a value of k. The progress of
the values of APk is constrained in ψ′gs , which describes that
in every step of the system’s execution, it can only decrease
the value of the counter by the number of assumptions vio-
lated. However, the counter value can always be increased.
We modify the safety assumptions such that those assump-
tions that s maps to some must only be satisfied if otherwise
the counter would drop below 0. As the system can only de-
crease the counter values with assumption violations, this
witnesses that recently k glitches with respect to the some-
properties have occurred.

The modified liveness guarantees only require the system
to satisfy its original liveness guarantees when finitely many
assumption violations occur. Also, in that case, the counter
must infinitely often have a value of k. While, intuitively,
this does not require the existence of a bound b ∈ N such
that the system is (s, k, b)-resilient, applying a synthesis tool
to a specification that we modified according to Definition 6
yields only implementations that have such a bound b. This
is because GR(1) synthesis procedures only produce finite-
state solutions, for which b is bounded from above by the
number of states in the system.

Let us now prove that using the modified specification, we
can synthesize (s, k)-resilient systems.

Theorem 1. Let I be an interface, ψ be a generalized
reactivity(1) specification, s be a resilience signature, k ∈ N,
and I′ and ψ′ be the modified interface and specification
constructed from I, ψ, s, and k using Definition 6. We
have:

• If there exists an (s, k)-resilient system with interface
I for ψ, then there exists a system that satisfies ψ′ for
the interface I′.

• If a system satisfies ψ′ for the interface I′, then it is
(s, k)-resilient and satisfies ψ.

Proof. Part 1: Assume that we are given some (s, k)-
resilient finite-state machine M. We can augment every
state inM by some counter value that represents the maxi-
mum number (in N∪{∞}) of violations of some-assumptions
that it is guaranteed to tolerate from the state (along any
path). Note that along any transition, the counter can only
decrease by as much as the number of assumption glitches
witnessed by the transition, as otherwise the counter value



of the predecessor state of a transition would be incorrect.
This fact also holds if we cap every number to k. Consider
that we augment the output of the system by the additional
signals APk that it uses to output the current counter value.
The set of states and the transitions between the states of
the system’s finite-state machine are not altered by adding
these signals as the counter value only depends on the cur-
rent state. The modified assumptions ψ′as are engineered to
hold along all (s, k)-sane traces then. These are the traces
that the system can cope with by the assumption that it
is (s, k)-resilient, so it must satisfy ψg

s on them. As ψ′gs
consists of two conjuncts, namely ψg

s and the requirement
that the counter is updated correctly, it also satisfies ψ′gs for
(s, k)-sane input streams. Fulfillment of the initialization
constraints is trivial.

Since M is (s, k)-resilient, we must be able to label ev-
ery state that lies at a loop of states that can be taken
infinitely often without violating a safety assumption with
k. Otherwise, some input could delay the recovery of the
system to a stage at which it can tolerate k more glitches
of some-properties arbitrarily, so the system would not be
(s, k, b)-resilient for any value of b. At the same time, along
all loops in the system that can be taken without glitches
and while satisfying the liveness assumptions of the system
when being taken infinitely often (a “good” loop), it must
satisfy ψg

l when taken infinitely often. Thus, if ψa
l is ful-

filled and the trace is (s, k)-sane, then ψ′gl is fulfilled as then
eventually the counter is k and ψg

l is fulfilled.
Part 2: Let a finite-state machine with interface I′ be

given that satisfies ψ′. We show that this system is (s, k)-
resilient for ψ. That is ψ is satisfied for all traces that are
(s, k, b)-sane for some b ∈ N. We set b to be the number
of states in the finite-state machine. Note that the counter
represented by the APk signals can only be decreased by
glitches for some-assumptions. Furthermore, in between ev-
ery b steps of the machine’s execution without a glitch, the
counter has to be reset to k, as otherwise we have found
a loop in the execution that can eventually be taken for-
ever and that violates the first conjunct of ψ′gl . Since con-
tinuously having a counter value of less than k also satis-
fies the liveness assumptions, such a loop would witness the
non-satisfaction of ψ′ by the system. Since, after at most
b steps, we have always found a loop, the claim follows.
As the counter value can only be decreased with glitches
(by the definition of ψ′gs ), the value always represents an
over-approximation of how many glitches still need to be
tolerated for a (s, k, b)-sane trace before a b-length recovery
phase. The only way to violate ψ′a is to violate a none-
assumption or to violate more assumptions than allowed by
the counter value in a step. Both cases witness that the
trace is not (s, k, b)-sane. Thus, the safety assumptions of
ψ′ only excluded cases that do not need to be considered for
establishing the (s, k)-resilience of a system. On the other
hand, if at some point glitches stop occurring, then the sys-
tem has to satisfy ψg

l . Also, ψg
s and ψg

i are included in the
guarantees of ψ′. Therefore, all (s, k, b)-sane traces of the
finite-state machine satisfy ψg.

Note that we can just ignore the additional output signals
that a system has for a modified specification, so an imple-
mentation for a modified specification can also be used for
the original specification. Also observe that starting from a
GR(1) specification, a modified specification is still in GR(1)
form. Thus, we can solve the (s, k)-resilient synthesis prob-

lem for a GR(1) specification using a classical GR(1) syn-
thesis procedure by just modifying the specification with the
construction of Definition 6.

When applying Definition 6, the number of signals in the
specification grows only logarithmically in k, and the num-
ber of liveness assumptions and guarantees grows only by 1.
Thus, the complexity of a GR(1) synthesis process (which is
polynomial in the number of liveness assumptions and guar-
antees and exponential in the number of signals) grows only
polynomially in k. This fact does not contradict the expo-
nential growth of the formula length, as complexity-wise, it
is subsumed in the increase of the number of signals.

In Definition 6, we assumed the strict semantics of the im-
plication that connects the assumptions and guarantees in
a GR(1) specification. For specifications for the non-strict
semantics, one can use the construction from [4] to translate
it to an equivalent specification for the strict semantics, and
then apply Definition 6. The resulting specification is suit-
able for one of the many GR(1) synthesis tools with strict
implication semantics.

5. FINDING ALL PARETO-OPTIMAL
ERROR-RESILIENCE CONFIGURA-
TIONS

In the previous section, we explained how to synthesize
(s, k)-resilient systems for given values of s and k. In a
formal system development process, we want to automate
the task of searching for the best values of s and k in order
to ensure that we obtain an as-good-as-possible system. In
particular, we want to find all Pareto-optimal solutions. A
value pair (s, k) is Pareto-optimal for a specification ψ if
there exists no other realizable value pair (s′, k′) 6= (s, k)
that dominates (s, k), i.e., such that for all i ∈ {1, . . . , n},
we have s′(i) ≥ s(i) (for the total order none < some < any)
and k′ ≥ k, with the restriction that we treat all values of
k as equal if s does not map any assumption to some (as
then the value of k does not matter). We also call such value
pairs (s, k) resilience configurations in the following.

As the set of possible resilience configurations (s, k) is in-
finite, we cannot just enumerate all configurations and check
for each of them if an (s, k)-resilient system can be found.
Even if we could, such an approach would be inefficient, as
we can make use of monotonicity – if for some (s, k), we find
an implementation, then we can surely find one for a configu-
ration (s′, k′) that represents weaker resilience requirements
to the system.

We propose the following two-step process. We first search
for the Pareto-optimal implementable resilience configura-
tions (s, k) for s : {1, . . . , n} → {none, any}. Observe that
here, the value of k does not matter, so without loss of
generality, we can set k = 0. In the second step, starting
from the realizable resilience configurations found in the first
step, we check if we can upgrade some none-assumptions to
some-assumptions and raise the value of k as much as pos-
sible. The maximally permissible values of k are always
bounded, as otherwise this would witness that we could
make all some-assumptions to any-assumptions, which con-
tradicts the fact that we started from a Pareto-optimal so-
lution for s : {1, . . . , n} → {none, any}.

We formalize both steps as a search problem for all max-
imal elements in a lattice (P,≤) that are mapped to true
by some antitone function f : P → B. In the first step,



Algorithm 1 Pareto-optima finding algorithm

procedure Search((P,≤),x,succ,f ,found ,missed ,done)
if x ∈ done then return ;

if ∃p ∈ missed : p ≤ x then return ;

if (∃p ∈ found : p ≥ x) ∨ f(x) then
for x′ ∈ succ(x) do

Search(x′,succ,f ,found ,missed ,done);
if @p ∈ found : x ≤ p then

found ← found ∪ {x};
else

missed ← missed ∪ {x};
done ← done ∪ {x};

end procedure

P is simply 2{1,...,n} and ≤ is set inclusion. An element of
P then contains all assumption indices i that are mapped
to any . To search for all Pareto-optimal solutions in this
context, we can apply algorithms from the field of computa-
tional learning, in particular for learning a monotone Bool-
ean function from an oracle. However, such algorithms are
typically geared towards minimizing the number of evalua-
tions of f in the context of Boolean functions (see [8] for an
overview of classical algorithms), and are not applicable to
the second step of our construction, in which a non-Boolean
lattice is considered. For simplicity, we use the search algo-
rithm given in Algorithm 1 for both cases, which is suitable
for all lattices with a least element. It is based on a solu-
tion idea by Gainanov [9] to traverse the lattice from the
least element until a Pareto-optimal element is found, but
uses a caching scheme to reduce the number of evaluations
of f . The first step in our two-step process can be executed
through the call

Search((P1,≤1), ∅, succ1, f1, found1, missed1, done1)

where the parameters are set as

found1 ← ∅;
missed1 ← ∅;
done1 ← ∅;
(P1,≤1)← (2{1,...,m},⊆).

For reasons of readability, the functions f1 and succ1 are
given in Algorithm 2. The function Realizable(s, k, ψ) de-
notes checking (s, k)-resilient realizability of the specifica-
tion ψ using Definition 6 and a GR(1) synthesis procedure.
The parameters to Search are passed by reference, so that
the contents of found1, missed1, and done1 are retained dur-
ing the recursive evaluation of Search and can be used for
caching the results already computed.

After we have identified the realizable resilience configu-
rations that are restricted to none and any entries, we turn
towards the second step of the construction, in which we
search for the remaining ones. We apply the Search proce-
dure

Search((P2,≤2), ({{1, . . . , n} 7→ none}, 1), succ2,
Realizable, found2, missed2, done2)

with the following parameters:

found2 ← conv(found1);
missed2 ← conv(missed1);
done2 ← ∅;
(P2,≤2) ← (({1, . . . , n} → {any , some,none}) × N≥1 \
({1, . . . , n} → {any ,none})× N≥2, cmp2).

Algorithm 2 Lattice successor computation function and
antitone function definition for step 1 of the Pareto-optimal
solution finding procedure

function f1(x)
return Realizable({i 7→ any | i ∈ {1, . . . , n}, i ∈

x} ∪ {i 7→ none | i ∈ {1, . . . , n}, i /∈ x}, 0, ψ);
end function

function succ1(A)
return {A ∪ {x} | x ∈ {1, . . . , n}} \ {A};

end function

Here, the function conv translates a resilience signature of
the shape used in step 1 to a resilience configuration for step
2, i.e., for every x ⊆ {1, . . . , n}, we have

conv(x) = {({i 7→ τ(x(i)) | i ∈ {1, . . . , n}}, 1) | x ∈ found1}

for τ(x) = any if x = true and τ(x) = none if x = false.
The comparison operator cmp2 and the function succ2 for

computing the direct successors of an element in the lat-
tice (P2,≤2) are given in Algorithm 3. Note that the succ2
function computes any direct successors of a resilience con-
figuration, but we have a slightly more complicated defini-
tion of the lattice in step two than in step one. It excludes
all resilience configurations (s, k) that are dominated by the
ones found to be realizable in step 1 (i.e., are contained in
found1) and for which k > 1. As we know that in such cases,
for any value of k, our specification is (s, k)-resiliently real-
izable, we prevent to needlessly search for larger values of
k in this way. Note that any resilience configuration in the
lattice is still reachable by succ2 steps from the least element
({{1, . . . , n} 7→ none}, 1), so we do not miss any solutions in
this way. However, it is ensured that our search only needs
finite time due to this modification since only finitely many
reachable resilience configurations are mapped to true by
Realizable. The reason is that for cases (s, k) not cov-
ered by the ones from step one, there is a maximum number
for k such that the specification is (s, k)-realizable, but not
(s, k + 1)-realizable. To see this, assume that there exists
a value of s such that the specification is (s, k)-resiliently
realizable for any value of k. Then it is also realizable for
(s′, 0) for which s′ results from setting all i ∈ {1, . . . , n} to
any if they are set to some or any in s. Such configura-
tions would have been found in step 1 however, and as a
consequence, succ2 would have never computed (s, k) as a
possible successor of any resilience configuration for k > 1.

To speed up the computation in step 2, found2 and
missed2 are initialized with information stored into found1

and missed1 after the first step. Setting k = 1 for entries
added to found2 is motivated by the fact that in (P2,≤2),
a value of k = 1 can only be exceeded for resilience con-
figurations (s, k) for which s is not dominated by some re-
silience configuration that is found to be realizable during
the first step of the overall search procedure, which would
not be covered by a case stored in found1 anyway. Note that
some of the configurations by which we initialize found2 may
be Pareto-optimal, whereas others might not. Thus, after
the call to Search, the set found2 can contain non-Pareto-
optimal configurations. Whenever this is a concern, we can
post-process the set found2 after the call to Search by sim-
ply removing resilience configurations that are dominated
by other configurations in found2.



Algorithm 3 Lattice navigation functions for step 2 of the
Pareto-optimal solution finding procedure

function cmp2((s, k), (s′, k′))
return (∀i ∈ {1, . . . , n} : s(k) ≤ s′(k)) ∧ (k ≤ k′);

end function

function succ2(s, k)
X ← {(s′, k) | s′ 6= s,∃i ∈ {1, . . . , n} : ∀j ∈

{1, . . . , n} \ {i} : s′(j) = s(j), (s(i) = none ∧ s′(i) =
some) ∨ (s(i) = some ∧ s′(i) = any)};

if ∃i ∈ {1, . . . , n} : f(i) = some ∧ ∀f ∈ found1, ∃i ∈
{1, . . . , n} : ¬f(i) ∧ (s(i) 6= none) then

X ← X ∪ {(s, k + 1)};
return X

end function

To illustrate the search algorithm, Figure 2 depicts
the call graph of the Search function for a specifica-
tion with two assumptions for the set of Pareto optima
{(any ,none, 1), (none, any , 1), (some, some, 2)}. Step one
yields {(true, false), (false, true)} in this case, so that
found2 is initialized with {(any ,none, 1), (none, any , 1)}.

The graph represents the candidate resilience configura-
tions during the recursive evaluation of the Search proce-
dure. Every configuration is labeled by whether it is realiz-
able (+) or not (−). The return edges are dotted, whereas
calls that cause the Search function to return in the first
two lines due to caching in the sets missed2 and done2 are
dashed. All other edges represent that the third line of Al-
gorithm 1 is reached and thus the function f given to the
algorithm is evaluated or a resilience configuration is cov-
ered by one of found2 already. The latter is the case for the
edges 1, 2, 21, and 24 in the figure. Thus, the GR(1) synthe-
sis procedure needs to be called six times in this example.

It can be seen that the Search algorithm mitigates the
problem that a lattice element can be reached from multiple
successors by caching whether an element has already been
considered in done. This happens at the edges 7, 22, and
25. For edge 12, the unrealizability of the configuration
(any , some, 2) is deduced from the fact that before return
edge 4, (any , some, 1) is stored in missed2.

In terms of complexity, the number of calls to the Real-
izable function in both steps of the algorithm is bounded
from above by 2(n + 1) · #Sig, where #Sig is the number
of realizable resilience configurations (s, k) in P2 for which
k is not needlessly ≥ 1, i.e., for which there is no realizable
resilience configuration (s′, 1) that dominates (s, k).

6. EXAMPLES AND EXPERIMENTS
We implemented the constructions from Section 4 and

Section 5 in a Python script that interfaces the GR(1) Syn-
thesis tool slugs [6], using strict implication semantics. We
consider three benchmarks to evaluate the practical applica-
bility of our resilient synthesis approach, which we describe
in the following. All computation times are given for an
Intel Xeon 2.40GHz computer running Linux, with a 4 GB
memory limit, which was never exceeded. All computations
are performed single-threaded. During the computation of
the realizable resilience configurations, only realizability is
checked, but no implementation is computed. All implemen-
tation sizes are given in states for explicit-state implemen-
tations that were computed in additional runs of slugs.

(none,none, 1)+

(some,none, 1)+ (none, some, 1)+

(any ,none, 1)+ (some, some, 1)+ (none, any , 1)+

(any , some, 1)− (some, some, 2)+ (some, any , 1)−

(any , some, 2)− (some, any , 2)−(some, some, 3)−
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Figure 2: Graphical representation of the call struc-
ture during step 2 of the search algorithm for some
specification with two assumptions.

6.1 Water Reservoir Level
As a simple introductory example, we consider a water

reservoir controller. The reservoir is required to always hold
between 10 and 99 gallons of water. There are two in-flows
that are uncontrollable for the system. Each of them either
delivers no water at all or two gallons of water at every time
step. The controller can decide to release three gallons of
water in a time step. We start with a reservoir level of 10
gallons.

By default, this setting is unrealizable as the controller
cannot avoid the reservoir to overflow. This can be seen
from the fact that in every step, four gallons of water can
be added, but only three gallons can be released. With the
two assumptions for each of the in-flows that they can only
release water in every second time step, the setting becomes
realizable.

Applying the constructions from the previous sections
yields {(any , some, 87), (some, any , 87), (some, some, 175)}
as the set of Pareto-optimal realizable resilience configura-
tions. Obtaining this set takes 4 minutes and 52 seconds of
computation time (including 270 calls to the slugs synthe-
sis tool). For comparison, synthesizing a non-error-resilient
controller for the water reservoir controller takes 0.35 sec-
onds. Checking the realizability of a modified specification
takes 1.07 seconds in the mean, and the number of (reach-
able) states of the computed implementations increases from
2043 for the non-resilient implementation to 2383 for the
Pareto optima with k = 87, and 2489 for the other opti-
mum.

The structure of the set of Pareto-optimal solutions can
be explained from the fact that we need glitches for both
of the in-flows in order to reach a situation in which the 3
gallons/time unit of the out-flow are insufficient to cope with
the in-flows. Due to the difference of one gallon per time unit
between the maximum in-flow and the maximum out-flow
one would expect (any , some, 89) to be a realizable resilience
configuration, but in fact it is not. The reason is that the
environment can initially trigger only a single in-flow, which
yields a reservoir level of 12 gallons, which the controller
cannot reduce without violating its specification. Starting



Figure 3: Workspace of the robot for the scenario of
Section 6.2.

from 12 gallons, 87 cycles with two glitches in every cycle
are then needed for the environment to enforce exceeding
the 99 maximally allowed gallons in the reservoir. If one
of the assumptions is an any-assumption, only one of the
glitches counts towards k, leading to a maximum value for
k of 87. If both glitches count, we get a maximally possible
value of k = 175. The difference of one is explained by the
fact that a computation cycle with a single glitch is never a
problem for the system, as this means that our in-flow is at
most 3 gallons, which can be handled. Thus, one additional
glitch is permitted.

6.2 Robot Motion Planning
As a second example, we consider a problem in which a

robot is required to deliver a package from the top left corner
of a workspace (shown in Figure 3) to the top right corner
of a workspace whenever it is triggered by some input sig-
nal. The workspace features some obstacles that the robot
must not collide with. Running into the boundaries of the
workspace is allowed. The robot has a sensor for its current
position and can trigger motion into eight directions (north
west, north, north east, etc.). Let us call the directions along
the width and height as x and y direction, respectively.

We have three safety assumptions in this setting: (1) the
robot position cannot change by more than one cell (hori-
zontally, vertically, or diagonally) per execution step, (2) the
x-position of the robot is updated according to whether it
moves westwards or eastwards, and (3) the y-position of the
robot is updated according to whether it moves northwards
or southwards.

Finding all Pareto-optimal resilience configurations
{(any ,none,none, 1), (some, some, some, 1), (none, some,
any , 1), (none, some, some, 2)} takes 16.8 seconds (including
the 22 calls to slugs). As assumptions (2) and (3) together
imply assumption (1), the first two of these configurations
are not interesting. The third configuration allows arbitrar-
ily many glitches in the y-direction, but only a single one in
the x-direction. The asymmetry between the x and y direc-
tions is due to that there are a columns along the y direction
in the workspace without obstacles. Whenever we get a se-
quence of glitches for assumption (3), the robot can move
to these columns to avoid bumping into obstacles, and later
return to fulfilling its delivery task. The last of the resili-
ence configurations is the one in which the robot maximizes
its resilience against small dislocations. Since the resulting

Figure 4: Robot behavior in the absence of glitches.

implementation has more reachable workspace cells, its size
increases from 164 states of the non-resilient implementation
to 7136 states. Figure 4 shows the paths taken by the robot
for getting the package to the top right corner in case that
no glitch occurred so far for the synthesized implementation
with resilience configuration (none, some, some, 2). In this
figure, the arrows show the transitions that the robot shall
take if it ends up in a cell from which an arrow originates.
The robot does not reach the cells without outgoing arrows
under the corresponding strategy. It can be seen that the
robot keeps a good distance to the obstacles. In case of dis-
locations of the robot, it performs different actions. Figure
5 shows the actions of the robot for the case that recently
two glitches have been observed, but no delivery is to be
made, i.e., the only task of the robot at the respective point
in time is to avoid obstacles.

6.3 Robot Motion Planning with Moving Ob-
stacles

We now consider a variant of the motion planning prob-
lem of Section 6.2 with a moving obstacle introduced to the
workspace shown in Figure 6. The robot to be controlled
starts in the upper left corner and has the assumptions and
guarantees described in Section 6.2. The controller also ob-
tains as input the position of the moving obstacle that has
a width of two cells and an equal height. In addition to the
three assumptions about the robot position updates, we have
two additional ones: (4) that the obstacle can only move in
every second execution step, and (5) that the obstacle can
only move to adjacent cells in every step while never touch-
ing the fixed obstacles (black) and the gray boundary cells,
which can only be crossed by the robot to be controlled.
Assumption (4) is necessary to prevent the obstacle from
moving into the path of the robot all of the time, while (5)
ensures that the obstacle cannot jump onto the robot and
can also not block the pickup and delivery regions, which
are colored in Figure 6 in the same way as in Figure 3.

Analyzing the scenario takes 361 minutes (with 75 calls
to slugs for modified specifications and an average com-
putation time of 288.5 seconds per call). The set of Pareto
optima is A = {(any ,none,none, some,none, 47)}, and syn-
thesis without error-resilience for the original specification
takes 9 minutes and 23 seconds. The number of states in
the implementation increases from 133819 to 1587114 for
the resilience signature in A. As again the satisfaction of



Figure 5: Robot backup behavior after two glitches.

assumptions (2) and (3) together imply the satisfaction of
assumption (1), the singular set of Pareto optima shows that
the only assumption for which we can tolerate glitches is the
one that disallows the obstacle to move at the same speed
as the robot (i.e., one cell per cycle for both x and y direc-
tions). However, we can tolerate bursts of glitches of length
47 for this assumption. Intuitively, the space available for
the robot to pass by the obstacle is not sufficient to tolerate
a glitch in its motion, but the obstacle being too fast a few
times can be compensated.

We also considered a moving obstacle in a 16×16 grid
without fixed obstacles in which the only task for the robot
is to avoid colliding with the moving obstacle. The assump-
tions are the same as in the previous case. After 4 minutes
and 29 seconds (90 calls to slugs), we obtain the following
Pareto-optimal resilience configurations:

1. (any ,none,none, some,none, 20)
2. (some, some, some, some,none, 1)
3. (none, some, some, some,none, 2)
4. (none, some,none, some,none, 3)
5. (none,none, some, some,none, 3)
6. (none, some,none,none,none, 5)
7. (none,none, some,none,none, 5)

Due to the smaller workspace, only 20 glitches of the as-
sumption that the obstacle must not move too quickly can
be tolerated (if all other assumptions are strict). Again, due
to the implication between assumptions (2), (3), and (1), the
second resilience configuration can be ignored. This time,
robot motion glitches and speed glitches for the moving ob-
stacle can be tolerated in combination, namely 2 glitches in
total if the direction of the robot motion glitch is not fixed,
and 3 glitches otherwise. If only robot motion glitches in x
or y direction need to be tolerated, then 5 glitches are admis-
sible. If both of them can occur, then only 2 glitches can be
tolerated (which is a special case of resilience configuration
number 3).

7. RELATED WORK
Reasoning about the changes (or preservations) of sys-

tem’s properties under uncertainties and disturbances has
been considered not only in the control theory literature but
also in synthesis of discrete reactive controllers. Numerous
notions of robustness (and sensitivity) have been defined for
different applications. For example, Tabuada et al. [15] con-

Figure 6: Robot workspace with a moving obstacle.

sider the problem of synthesizing a program whose behavior
in case of disturbances stays close to the nominal-case behav-
ior and at the same time the effect of disturbances vanishes
over time. It can be seen that this robustness criterion is
motivated by similar notions in controls [18, 16] and heavily
depends on the existence of a distance notion between differ-
ent input/output streams, in contrast to the error-resilience
criterion that we use in this paper. Additional work includes
[3] which focuses on safety properties and uses the ratio of
the distances between allowed and observed system behavior
to that of the environment behavior as a measure of sensi-
tivity. Reference [17] on the other hand synthesizes reactive
controllers that are robust to uncertainties in the underly-
ing open finite transition systems (e.g., due to unmodeled
transitions).

Ehlers [5] discusses the synthesis of systems that are ro-
bust in the sense that after safety assumption violations,
the system must return to an operation mode in which the
safety guarantees are satisfied again after only finitely many
violations of these. Thus, such systems have a backup strat-
egy for anomalous operating conditions without the need for
the system engineer to specify one. Bloem et al. [2] consider
a strengthened version of the approach in which a robust
system is required to satisfy its liveness guarantees even in
the presence of infinitely many safety assumption violations.
In the approaches of [5] and [2], the robustness criteria are
purely qualitative. In contrast to these works, in our new
approach, all of the guarantees should always be satisfied
without deviation. We systematically extend the set of en-
vironment behaviors that can be dealt with by the system
synthesized. Our error-resilience definition is thus closer to
the classical notions of robustness in control, in which the ad-
missible environment conditions of the computed controllers
are to be loosened as much as possible.

8. CONCLUSION & DISCUSSION
In this paper, we considered the problem of synthesizing

systems that are resilient against environment assumption



violations. The key contribution is a construction to change
a generalized reactivity(1) specification to one of the same
type, but that encodes the search for an implementation that
exhibits the desired error-resilience level. This encoding al-
lows to use off-the-shelf generalized reactivity(1) synthesis
tools for obtaining error-resilient systems. Our construction
distinguishes between two types of error-resilience for every
assumption: resilience against arbitrarily long sequence of
glitches, and resilience against at most k glitches (for some
k). To find all Pareto-optimal assignments of the assump-
tions to these types and to maximize the value of k, we de-
scribed an algorithm to search for these Pareto optima and
thus provided a fully-automated method to explore how re-
silient an implementation for a specification can be made.

Our contribution not only allows to synthesize error-
resilient implementations, but also helps a system engi-
neer with the manual construction of error-resilient sys-
tems. Starting with a specification for the system to be
constructed and a corresponding implementation, we can
analyze whether the implementation is already optimal with
respect to error-resilience by comparing the error-resilience
level of the implementation against the Pareto optima found
in the synthesis process.

The definition of the synthesis problem for error-resilient
systems that we considered in this paper has many conceiv-
able variants that we did not discuss in detail. For example,
we could require that the length of a recovery period (re-
ferred to as the value of the variable b in Section 3) shall be
minimized. We can approximate this behavior by changing
the definition of ψ′gl in our specification modification con-
struction (by replacing all liveness guarantees GFφ in ψ′gl by

GF((LkM ∧ φ) ∨
∨k−1

i=0 LiM ∧ ¬XLiM) in order to count chang-
ing the counter value as progress whenever it is not yet k).
However, a slight modification of the GR(1) synthesis tool is
advisable in order to let the implementation favor transitions
that make progress towards the unmodified liveness guaran-
tees whenever possible while working towards increasing the
counter value.

Another variant of practical relevance is strengthening the
definition of error-resilience to require the satisfaction of a
specification’s liveness guarantees also in the case of infin-
itely many safety assumption violations. Note that this vari-
ant only makes sense if the resilience signature does not map
some assumptions to any, as otherwise the implementability
of a system for this error-resilience definition would witness
that the any-assumptions are actually not needed. Synthe-
sis for such a variant of the error-resilience definition is best
performed by using a modified synthesis algorithm, in which
we use the unmodified liveness assumptions and guarantees,
but at the same time force the system to always eventually
set the counter to a value closer to k or k itself, regardless
of the satisfaction of the liveness assumptions.

These two variants of the methods proposed in this paper
retain the same complexity of the synthesis process.
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APPENDIX
We provide some additional information here that may be
of interest to a few readers.

A. A NOTE ON THE SIZES OF THE IM-
PLEMENTATIONS

In the main part of the paper, we provided some statistics
on the sizes of the computed implementations. These were
provided as the numbers of states in explicit-state imple-
mentations. The synthesis tool slugs that we used for our
experiments computes these as Mealy-machines in which the
states are labeled by the last input to the system, the last
output to the system, and the number of the liveness guaran-
tees for which the implementation is trying to make progress
when being in that state.

For some benchmarks, no such explicit-state implementa-
tion sizes were given. This is because explicit-state imple-
mentations are not the best target for larger specifications.
In fact, GR(1) synthesis tools such as slugs use binary deci-
sion diagrams (BDDs) as symbolic data structure to speed
up solving the synthesis game that is internally built for
solving the synthesis problem. The resulting strategy in
the game, which represents an implementation, can then be
given as a list of BDDs. With a simple wrapper, they are
usable as a software controller. Alternatively, a symbolic
strategy extraction technique such as the one in [7] can be
used to compute a small circuit from the BDDs.

The BDD node counts of the computed implementations
in the examples in the main part of the paper were:

• Water reservoir controller:

– Base version: 328

– Resilience signature (some, some, 175): 7098

– Resilience signature (any , some, 87): 3305

– Resilience signature (some, any , 87): 3252

• Robot motion planning without obstacles:

– Base version: 678

– Resilience signature (none,none, some, 4): 2545

– Resilience signature (none, some, some, 2): 13459

– Resilience signature (some, some, some, 1): 9927

– Resilience signature (any ,none,none, 1): 4797

• Robot motion planning with moving obstacle and de-
livery task:

– Base version: 41793

– Resilience signature (any ,none,none, some,none,
47): 666761

• Robot motion planning with moving obstacle and with-
out delivery task:

– Base version: 309

– Resilience signature (any ,none,none, some,none,
20): 74072

– Resilience signature (some, some, some, some,
none, 1): 7129

– Resilience signature (none, some, some, some,
none, 2): 13390

– Resilience signature (none, some,none, some,
none, 3): 13665

– Resilience signature (none,none, some, some,
none, 3): 37702

– Resilience signature (none, some,none,none,
none, 5): 12753

– Resilience signature (none,none, some,none,
none, 5): 49708

In the main part of the paper, we preferred to give the num-
bers for explicit-state implementations as the meanings of
the BDD node counts are hard to interpret and depend on
the variable reordering heuristic used in the BDD library.

B. A NOTE ON THE INPUT COMPLEXITY
OF THE APPROACH

In the main part of the paper, we discussed the out-
put complexity of our algorithm for finding optimally error-
resilient implementations, i.e., how much harder the syn-
thesis problem gets when measured in the quality of the
output. This view is suitable for the practice of synthesiz-
ing error-resilient systems, as a longer computation time is
acceptable when obtaining an implementation with a good
level of error-resilience.

The traditional approach in complexity theory is however
to examine the input complexity of a problem or algorithm,
i.e., how much computation time or space is needed in order
to perform the task. For the sake of completeness, let us
now have a look.

The time complexity of the standard GR(1) synthesis
problem is:

• linear-time for a fixed set of variables (by having a big
lookup table for all possible specifications and reading
the input to select the right entry1)

• linear-time for a fixed specification (by having a big
lookup table for all possible variable set partitionings
into input and output variables and reading the input
to the synthesis problem to select the right entry)

• exponential-time when counting both the variable set
and the specification as part of the input

A standard implementation of the GR(1) synthesis algo-
rithm runs in time O((2v)4 ·na

l ·na
s), where v is the number of

input and output propositions, na
l is the number of liveness

assumptions, and na
l is the number of liveness guarantees.

Both na
l and na

l are set to 1 if there are no properties of the
respective types in the specification. Thus, the algorithm
runs in time polynomial in the number of liveness proper-
ties, but exponential in v.

Applying the construction from Definition 6 before us-
ing the GR(1) synthesis procedure leads to a blowup of the
specification: for some value of k, the specification length
growths exponentially in k, although the specification size,
i.e., the number of distinct subformulas appearing in specifi-
cation parts, grows only polynomially when applying Defini-
tion 6. A tight integration of the specification modification

1Note that in GR(1) specifications, one can write Boolean
formulas only over the variable values in the current com-
putation step and the next computation step. Therefore,
there are only finitely many semantically different formu-
las that can be initialization, safety, or liveness assumptions
or guarantees in GR(1) specifications, which make the set
of specifications over a fixed set of variables finite. Dur-
ing reading the specification, all that needs to be done is
to parse the specification parts according to which possible
value table over the variables in the current and next state
they correspond to.



step and the synthesis algorithm can thus prevent the expo-
nential blowup. At the same time, the game blows up by a
factor that is only polynomial in the value of k.

Note that the highest value of k that needs to be consid-
ered is 2v ·na

s , where na
s is the number of safety assumptions

in the specification. This is because 2v is the number of po-
sitions in the non-error-resilient synthesis game. From any
position in the game, it can take the environment player at
most 2v steps with safety assumption violations to enforce a
safety guarantee violation as otherwise, a loop along a path
to the guarantee violation could be witnessed, which could
be cut out. As all values of k greater than 2v · na

s thus
witness that arbitrarily many assumption violations can be
tolerated by an implementation (in every step, there can be
up to na

s violations at the same time), and this case would
be found by step one of our overall Pareto optima search
algorithm, it follows that considering only values of k up to
a limit of 2v · na

s suffices.
As the synthesis game can thus only blow up by a factor

that is polynomial in k = 2v · na
s , and the number of live-

ness assumptions and guarantees only increases by at most
1 when applying Definition 6, it follows that all specifica-
tion analysis steps in the Algorithm given in Section 5 have
a complexity that is exponential in v and polynomial in the
length/size of the specification.

The number of these steps is now bounded by 2v · na
s ·

3O(na
s ), as this is the number of different resilience signatures

with a bound ≤ 2v · na
s . This leads to an overall complexity

that is exponential in the number of atomic propositions of

the original specification and polynomial in the length/size
of the specification, except for the number of safety assump-
tions, in which it is exponential.

Overall, the combined input (time) complexity of the al-
gorithm is in EXPTIME, and the linear-time arguments for
the cases of fixing the set of variables or fixing the specifica-
tion still apply.

Note that in practice, synthesis tools are used that are
based on binary decision diagrams, which employ a num-
ber of heuristics that make it virtually impossible to give
correct upper bounds on computation times that are not
ridiculously conservative.

C. ON A VARIANT OF THE ERROR-
RESILIENT SYNTHESIS PROBLEM

In the conclusion of the main part of the paper, we give an
outlook on possible variants of the error-resilient system syn-
thesis problem. In the second of these variants, we require
that the system’s liveness guarantees must also be satisfied
when infinitely many glitches occur.

As stated in the conclusion, this does not alter the com-
plexity of the synthesis problem (it is still EXPTIME in
the number of atomic propositions in the original specifica-
tion and in the binary representation of k). However, for a
sound implementation of a synthesis algorithm for this mod-
ified error-resilience notion, the solution algorithm needs to
be altered to support two-pair Street games. Bloem et al. [2]
give a description of how to solve such games.
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