
Estimator-Based Reactive Synthesis under Incomplete
Information

Rüdiger Ehlers
University of Bremen and DFKI GmbH

Bremen, Germany

Ufuk Topcu
University of Pennsylvania

Philadelphia, Pennsylvania, United States

ABSTRACT
Lack of complete run-time information about the envi-
ronment behavior significantly increases the computational
complexity and limits the applicability of practical reactive
synthesis methods, e.g., synthesis from generalized reactiv-
ity(1) specifications. We tackle this difficulty by splitting
incomplete-information controller synthesis into estimator
construction and complete-information synthesis steps. The
estimator, which executes in parallel to the controller, es-
tablishes approximations of the unobserved variables that
are salient for the synthesis step. It essentially provides an
abstraction from the belief space of the controller, whose ex-
ponential growth often plagues incomplete-information syn-
thesis, by keeping track of only the properties of relevance
for the specification engineer and the scenario under consid-
eration.

We formalize an estimator notion for controller synthe-
sis, and present a framework in which such estimators work
in concert with controllers reacting partly to the estimator
outputs to realize given temporal logic specifications. In
order to limit the size and structure of the estimators, we
focus on positional estimators in computation. Moreover, we
demonstrate how such estimators are well-suited to be used
in the context of generalized reactivity(1) synthesis. We il-
lustrate the use of the estimator-based synthesis method on
a running example motivated by intelligent transportation
systems.

1. INTRODUCTION
Cyber-physical systems have controllers whose require-

ments can be specified concisely and completely, which
opens up the opportunity to apply automated controller
synthesis. Especially in cases in which one or more opti-
mization criteria are given, an automated synthesis proce-
dure allows to explore the space of feasible solutions and
to pick the controller in a well-informed manner. Recent
work in the area of practical reactive synthesis demonstrates
that for smaller specifications, contemporary synthesis algo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
HSCC ’15, April 14 - 16, 2015, Seattle, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3433-4/15/04 ... $15.00.
http://dx.doi.org/10.1145/2728606.2728626.

rithms can already be applied [2, 9]. At the same time, new
concepts are developed to deal with larger specifications and
thus to extend the applicability of reactive synthesis even
further [16, 19].

A drawback of most of these approaches is however that
they cannot deal with incomplete information, meaning that
not all information about the environment is available to
the controller at runtime. For cyber-physical systems, this
is a common case: measured values can deviate from real
values and often the system does not have sensors for ev-
ery physical property of the environment that occurs in
the specification. While for some synthesis problems of al-
ready high complexity (e.g., synthesis from specifications in
general linear-time temporal logic), incomplete information
does not raise the complexity of the problems further [10],
this fact does typically not hold for synthesis problems of
lower complexity (hence of practical interest). In particular,
for generalized reactivity(1) synthesis, which is a synthesis
approach that is valued in control and robotics applications
for its good scalability, incorporating incomplete informa-
tion raises its time complexity from singly-exponential to
doubly-exponential. A doubly-exponential complexity elim-
inates the simple symbolic encoding of the generalized reac-
tivity(1) synthesis problem, and thus substantially weakens
its scalability. This fact leads to the question of how we can
avoid one of the exponential factors in the rate of complex-
ity growth in the synthesis problem and keep the scalability
of singly-exponential synthesis approaches even for settings
with incomplete information.

In this paper, we present an approach to cyber-physical
system controller synthesis under incomplete information
that offers a singly-exponential time complexity and thus
side-steps the complexity increase imposed by incomplete
information. This reduction in complexity is accomplished
by computing an estimator for the unobserved variables be-
fore performing the actual synthesis step. An estimator is
an automaton that uses all information that the system can
observe to derive sound bounds on the unobserved variables.
It executes in parallel to the controller and provides it with
information about the possible values of the unobserved vari-
ables. As such, estimators abstract the belief space of a con-
troller. The belief space represents all physical system states
that the controller must consider to be possible at a point in
time in order to operate correctly according to the modeling
of the physical environment. Belief spaces are commonly
of size exponential in the number of physical system states
and responsible for the high complexity of synthesis under
incomplete information. Our estimators abstract from this

belief space by only keeping track of the properties defined
by the specification engineer and that are of relevance for
the scenario.

Example: As an example, consider a car that is equipped
with an automatic distance keeping assistant. The car has
a sensor that measures the approximate distance to the
leader car and a sensor for its own speed. At every point
in time, some minimum distance is to be maintained, and
the acceleration and speed of both cars are bounded by
some constants. Updating the distance between the cars is
subject to noise due to imperfect steering and influence of
wind. Suppose that it is the objective of the follower car to
drive close to the leader car without risking to go below the
minimum allowable distance. This task is difficult as the
follower car only has a noisy distance sensor. Using terms
from reactive synthesis, the actual distance between the cars
can be considered to be unobserved as there is no precise
measurement available. Equally, the speed of the car ahead
is unobserved, and information about possible speed values
can only be obtained by deriving them from the evolution of
the measured distances and the follower car’s speed values.

We can automatically obtain a controller for the scenario
in this example by first synthesizing an estimator that al-
ways keeps track of the minimal and maximal possible dis-
tances and the minimum and maximum speed values of the
leader car. In addition to the sensed values, the estimator
also has the chosen acceleration of the controller to be syn-
thesized as input. Using these bounds on the actual physical
quantities, the synthesis step can then be performed, and the
resulting controller is implemented in parallel to the estima-
tor.

In order for the estimator to compress the belief space to
a representation that can be handled in practical synthesis
approaches, we restrict it to base its next estimate only on
the last and current input and output of the system and
the previous estimate, and call such estimators positional .
While this approach reduces the precision in some appli-
cations, we can avoid the exponential blow-up due to the
belief space in this way. To use an estimator in synthesis,
the controller specification has to be concerned with observ-
able or estimated variables only. In this way, variables that
are not input to the controller (and are hence unobservable)
vanish completely from consideration in the main synthe-
sis step and we can treat the problem as one of complete
information at that point.

In our example, instead of specifying that the minimum
distance between the cars never drops below some value, we
would instead require the controller to ensure that the es-
timator always outputs that its minimum estimate is above
the critical value. As the estimation is always conservative,
the intended specification follows.

Our estimator computation technique is not tied to a par-
ticular synthesis approach. For the demonstration of its ap-
plicability, we will however use it in the context of general-
ized reactivity(1) synthesis, where we discretize the contin-
uous values of the physical domain into finite ranges. This
modification allows us to apply well-established synthesis
tools using binary decision diagrams (BDD) as symbolic rea-
soning engines for a proof of concept. To improve the scala-
bility of the synthesis process and the estimator computation
further, we also present a technique to perform state space
compression that uses relationships between observed and

estimated variables in order to reduce the size of the BDD
representation of the estimator.

1.1 Related Work
In control design, estimators in various forms have played

a central role in cases in which states of the system under
control are not directly measured [11]. More relevant to
our work are the notions of observability and estimators for
systems with discrete-valued variables. For example, observ-
ability in finite-state automata with limited direct measure-
ments was studied in [13, 4]. The latter reference also pro-
vided encodings of logic-based dynamic observers. Similarly,
deterministic finite state observers acting in conjuction with
full-state feedback controls were used in [17]. The notion
of “immediate observability” in [12] limits the information
used in estimation similarly to the positional estimators we
discuss. Estimation of bounds on discrete variable values
in cases in which the continuous variables are available for
direct measurement was subject to [6]. Finally, observers
for hybrid systems, composed of a location observer and a
continuous observer, were studied in [1].

The problem of synthesizing controllers that operate un-
der incomplete information is well-researched. While there
are a number of models, including partially observable
Markov decision processes [15] and two-player games with
merely non-deterministic choices for the players, we focus
on the latter model for performing synthesis in this paper.
A classical result in this area is that solving games in which
only one of the players can fully observe the play in the game
has an exponential time complexity, even for very simple
game types [14]. Thus, the complexity induced by comput-
ing a belief set in the game is unavoidable.

Estimators have already been used in the scope of distrib-
uted systems [8], where they observe the interface of a dis-
tributed system and compute estimates for its internal state.
The estimators considered in this context were precise, and
thus subject to state space explosion. Consequently, they
are of little use to reduce the complexity of a controller syn-
thesis problem for cyber-physical systems.

Velner and Rabinovich [18] considered the problem of
noisy input in controller synthesis from a theoretical per-
spective. They identified decidable and undecidable cases
of the reactive synthesis problem where input is incorrect in
some steps and the controller may or may not observe this.
They did not consider additional sources of incomplete in-
formation, such as measurements that yield values that are
close to the real ones.

1.2 Structure of the Paper
We start by recalling some preliminaries in the next sec-

tion. Then, we give a description of estimators in Section 3.
In Section 4, we continue by describing the car following sce-
nario that we introduced above and will use as case study for
estimator-based synthesis. We show how to compute estima-
tors in Section 5, perform synthesis using them in Section 6
and describe a state space reduction technique to further in-
crease scalability in Section 7. The experiments performed
on the car following scenario are given Section 8 followed by
the concluding remarks in Section 9.

2. PRELIMINARIES
We now overview the main concepts needed in the subse-

quent sections.

Sets and words: Let AP be a set of atomic propositions.
A word over AP is a finite or infinite sequence w = w0w1 . . .
with wi ⊆ AP for every i < |w|. Words can represent the
execution of a controller or an estimator, which we define
in the next section. Both are also called finite state ma-
chines (FSM). The proposition set AP can be partitioned
into the input and output propositions of the FSM. We treat
valuations of the propositions in AP to {false, true} inter-
changably to sets that represent only the propositions that
are meant to be true. For simplicity, we use elements from
2X × 2Y and from 2X∪Y for disjoint sets X and Y inter-
changably. For v ∈ 2X∪Y , we denote by v|X the elements in
v ∩X and by v|Y the elements in v ∩ Y .

Specifications: In order to reason about the behavior of
an FSM, we can compare it against a specification. Formally,
specifications are subsets of (2AP)ω, i.e., sets of (infinite)
words that are considered to satisfy the specification. Log-
ics such as linear temporal logic (LTL) are commonly used
to represent such subsets of (2AP)ω concisely. In addition
to standard propositional logic, LTL uses temporal opera-
tors such as X (“next”), G (“globally”) and F (“eventually”)
to allow reasoning over the valuation of the propositions
along different places in a word. For example, the property
G(r → Fg) holds along all words in which an occurrence of
r in the word is always followed by an occurrence of g at
some later point. A full definition of LTL that includes all
operators and not only the ones that we use in this paper
can be found in the literature on this topic (see, e.g., [3]). In
addition to LTL, we also use a strong implication operator
→s. Intuitively, a property ψ →s ψ

′ holds along a word if
either ψ′ holds or ψ is violated before ψ′ can be observed
not to hold. A formal definition of this concept has been
given by Bloem et al. [3].

Finite-state machines: Finite-state machines are de-
fined as tuples M = (S,API ,APO, s0, δ) with the (finite)
set of states S, the set of input propositions API , the set of
output propositions APO, the initial state s0 ∈ S, and the
(partial) transition function δ : S×2API ⇀ S×2APO . Given
an input stream wI = wI0w

I
1 . . . ∈ (2API)ω, we say that M

produces an output stream wO = wO0 w
O
1 . . . ∈ (2APO)ω along

with a run π = π0π1 . . . ∈ Sω if π0 = s0 and for all i ∈ N,
we have δ(πi, w

I
i) = (πi+1, w

O
i). The corresponding word

(also called trace) of M is then w = (wI0 , w
O
0)(wI1 , w

O
1)

A trace can also be finite if δ does not offer a next state and
next output for some combination of state and input. For
machines whose traces should satisfy some specification, fi-
nite traces are considered if all extensions of the finite trace
trivially satisfy the specification. The set of all (infinite)
traces of a machine is called its langauge, denoted as L(M).
The type of finite-state machines used in this paper are also
called Mealy machines in the literature.

Controller synthesis: Given a specification ϕ (e.g., in
LTL) over a set AP = API ∪ APO of atomic propositions,
the reactive synthesis problem is to compute a finite-state
machineM = (S,API ,APO, s0, δ) all of whose words satisfy
ϕ. A specification is called realizable if there exists such
an FSM. A slight variation of the realizability and synthesis
problems is to add incomplete information: ϕ then ranges
over AP = API ∪ APO ∪ APH , where APH is the set of
hidden variables. The correctness requirement in this case
is that for all words w = w0w1 . . . ∈ (2API∪APO)ω produced
byM and all sequences of hidden variable valuations wH =

wH0 w
H
1 . . . ∈ (2APH)ω, we must have that (w0 ∪ wH0)(w1 ∪

wH1) . . . satisfies ϕ.
Generalized reactivity(1) synthesis: Generalized re-

activity(1) synthesis [3], which is commonly abbreviated as
GR(1) synthesis, is a synthesis approach with a compara-
bly low computational complexity and good scalability in
practice. It supports specifications of the form

ϕ = (ϕai ∧ ϕas ∧ ϕal)→s (ϕgi ∧ ϕ
g
s ∧ ϕgl). (1)

The elements on the left-hand side of the strict implication
are called the assumptions while the right-hand part of the
implication forms the guarantees. All parts ϕaγ and ϕgγ for
γ ∈ {i, s, l} are conjunctions of properties in LTL. The parts
ϕai and ϕgi represent initialization assumptions and guaran-
tees, which are formulas that are free of temporal operators.
The parts ϕas and ϕgs represent safety assumptions and guar-
antees, which are of the form G(ψ), where the only temporal
operator that can occur is X and may not be nested. Fi-
nally, the parts ϕal and ϕgl represent liveness assumptions
and guarantees, which are of the form GF(ψ), where the
constraint imposed on ψ is the same as in the previous case.

To simplify the notation, we assume henceforth that ϕai
and ϕgi represent a unique variable valuation to API ∪ APO
and that the finite-state machine to be synthesized from ϕ
does not need to produce the initial valuation. All tech-
niques presented in the following would still work without
this assumption, though the notation would need to be more
complicated.

Due to the special structure of the safety properties, we
can represent them in an alternative form as sets of tuples
over 2API∪APO . Let Gψ be such a safety constraint. We
can replace the constraint by the set of tuples (x, x′) for
which a word starting with xx′ satisfies ψ. As the temporal
operators may not be nested in ψ, the other elements in
the word do not matter. Taking the conjunction between
safety constraints then amounts to taking the intersection of
the respective sets. Note that for constraints in ϕas , which
typically do not refer to APO in the scope of an X operator,
the constraints can be represented as sets of elements in
2API∪APO × 2API .

One source of the high efficiency of the GR(1) synthesis
approach is the fact that if there exists an implementation
for the specification, then there exists one in which the set of
states is defined as S = 2API∪APO × {1, . . . , n} × {1, . . . ,m},
where n ≥ 1 is the number of liveness assumptions and
m ≥ 1 is the number of liveness guarantees. At the same
time, a state (s, i, j) is always reached via transitions for the
input proposition valuation s|API and the output proposition
valuation s|APO . If no liveness assumptions or guarantees are
present, we can then also represent the transition function
of such an FSM by a set of transitions between the states,
i.e., by a set ρ ⊆ 2API∪APO × 2API∪APO .

Encoding integers: While we assume all propositions to
be boolean in this paper, this restriction does not mean that
the propositions do not encode values from a more complex
type. In particular, we will encode integer variables into
boolean variables. Given some integer variable v with the
domain {k, . . . , n − 1}, we need dlog2(n − k)e propositions
to encode a value. If, for example, v is supposed to be the
output of a finite-state machine, the propositions would all
be contained in APO. We can then use linear equations over
the variables to encode, for example, safety constraints. As
an example, G(v 6= v′) means that before and after a tran-

sition of an FSM, the variable v should not have the same
value. We use primed variables to represent the variable’s
valuation in the next step as the LTL operator X is reserved
for boolean values. We use equations of the form a = b± c
as shorthand for (a+ c ≥ b) ∧ (a ≤ b+ c).

Parallel composition: Finite-state machines can
run in parallel in order to jointly perform a cer-
tain control task. Given a set of input propositions
API = API,1 ∪ API,2 to both machines together, two
FSMs M1 = (S1,API,1,APO,1, s0,1, δ1) and M2 =
(S2,API,2,APO,2, s0,2, δ2) produce a word w = w0w1 . . . ∈
(2API∪APO,1∪APO,2)ω and two traces π1 and π2 such that
for all i ∈ N, we have δ1(π1,i, wi|API,1) = (π1,i+1, wi|APO,1)
and δ2(π2,i, wi|API,2) = (π2,i+1, wi|APO,2). We require that
APO,1 and APO,2 do not overlap and that only one of the
FSMs can read from the other one, so that we cannot have
API,1 ∩ APO,2 6= ∅ and API,2 ∩ APO,1 6= ∅ at the same
time. A specification for the overall setting ranges over
API∪APO,1∪APO,2 plus possibly some hidden propositions,
which are taken into account as explained above.

3. ESTIMATORS FOR CONTROLLER
SYNTHESIS

Estimators collect information about the state of an envi-
ronment that is partially unobservable. They use available
inputs (such as noisy measurements) and derive informa-
tion about the environment’s state using the description of
its possible evolutions.

The motivation for computing estimators is due to their
usefulness in a reactive synthesis process. If the require-
ments of a controller to be constructed can be specified only
over the observable input and output of it and an estima-
tor, we have effectively eliminated all unobservable variables
in the controller specification. This modification allows us
to treat the synthesis problem as one under complete infor-
mation instead of one over incomplete information, which
greatly reduces complexity.

Let us now formalize the notion of an estimator. For the
scope of this section, we fix APobs to be a set of observ-
able variables, APest to be a set of estimation variables,
and APhid to be a set of hidden variables. We assume
that APobs can be decomposed into the action set APact

and the input set APinp . Furthermore, ρe ⊆ (2APobs∪APhid)2

and ρs ⊆ (2APobs∪APhid∪APest)2 are environment and estima-
tor safety specifications, respectively. Both are in the form
of sets of tuples that describe the allowed transitions. We
also let x0 ⊆ APobs ∪ APest ∪ APhid be an initial variable
valuation.

Definition 1. We call a finite-state machine M =
(S,APobs ,APest , δ, s0) an estimator if for every word w =
w0w1w2 . . . ∈ L(M) and every sequence h = h0h1h2 . . . ∈
2APhid of hidden variable valuations, it holds that x0(w0 ∪
h0)(w1 ∪ h1) . . . |= (ρe →s ρs).

In the definition of a specification for an estimator, ρe in-
tuitively encodes how the environment can evolve, and ρs
describes what information about the environment the esti-
mator is required to compute. Note that Definition 1 does
not describe requirements over the size (or structure) of the
estimator or which valuations to APest it prefers whenever
there is more than one possible valuation at a time. The
following definitions detail both of these points.

We start by introducing history-freedom. Consider an es-
timator M reading the observable part of an environment’s
evolution. For an estimator to be history-free, we require it
to be able to work correctly even if the estimator suddenly
starts to obtain the observable part of a different evolution
of the environment as its input stream. This means that
the estimates it produces should be correct for the second
evolution after switching the estimator’s input. The only
requirement on the two evolutions for the switching to make
sense is that they match on their observable variables’ val-
ues at the switching point. More formally, we can define
history-freedom as follows:

Definition 2. Let M be an estimator and r =
r0r1r2 . . . ∈ 2APobs∪APhid and r′ = r′0r

′
1r
′
2 . . . ∈ 2APobs∪APhid

be two arbitrary evolutions of the environment, i.e., such
that (ri, ri+1) ∈ ρe and (r′i, r

′
i+1) ∈ ρe for every i ∈

N. We pick some cut points j and j′ ∈ N such that
rj |APobs = rj′ |APobs and assemble r and r′ to r̃ = r̃0r̃1 . . . =
r0r1 . . . rj−2rj−1r

′
j′r
′
j′+1r

′
j′+2

Let w = w0w1 . . . be the run of M for r̃. If, regardless of
the initial choice of r, r′, j, and j′, we have that w correctly
estimates r up to reaching step j, and correctly estimates r′

later, we say that M is history-free. Formally, this require-
ment amounts to having ((wi∪ri|APhid), (wi+1∪ri+1|APhid)) ∈
ρs for all i < j, and having ((wi ∪ r′i−j′+j |APhid), (wi+1 ∪
ri−j′+j+1|APhid)) ∈ ρs for all i ≥ j.

Definition 3. We call an estimator M =
(S,APobs ,APest , δ, s0) positional if (1) M is history-
free, (2) we have S = 2APobs∪APest , and (3) for every
(s′, y) = δ(s, x) for some s, s′ ∈ S, x ⊆ APobs , y ⊆ APest , we
have s′ = x ∪ y.

Since a positional estimator has S = 2APobs∪APest as the
state space, the size ofM is fixed and limited. The fact that
positional estimators are history-free allows the estimator to
forget how an estimate was derived once it has been made.
This property gives a foundation for the estimator to recover
gracefully in cases in which the environment deviates from
ρe temporarily, as it ensures that the precise history of the
environment’s evolution is only of limited importance to the
estimator.

The estimator specification ρs can be quite coarse. For ex-
ample, it may state that, at every point in time, (min b ≤ b)
and (max b ≥ b) must hold for some integer variable b
encoded into APhid and some integer variables max b and
min b of the same domain in the estimation propositions.
An estimator can simply always output the minimal and
maximal values in the domain of b. Clearly, such crude es-
timates are not desired, and we focus on optimal estimators
instead.

Definition 4. Given a partial order ≤E over valuations
in APest , an estimator M = (S,APobs ,APest , δ, s0) is op-
timal if, for every input sequence wI = wI0w

I
1w

I
2 . . . ∈

(2APobs)ω that satisfies ρe and for the word w = w0w1w2 . . .
induced by M for wI , there is no other estimator that in-
duces a word w′ = w′0w

′
1w
′
2 . . . that is a better approxima-

tion. We say that w′ is a better approximation than w if
w 6= w′ and for all j ∈ N, w′j |APest ≤E wj |APest .

We say that M is an optimal positional estimator if there
is no other positional estimator that offers a better approxi-
mation for some input sequence.

Estimator

Controller

APinp

APestAPact APhid

Figure 1: Using an estimator in combination with a
controller. Edges denote how proposition values are
propagated between the compontents. The hidden
variables APhid can be read by neither the estimator
nor the controller though the (original) controller
specification may depend on them.

To conclude the problem statement, let us discuss how we
can use an estimator to simplify a synthesis problem under
incomplete information. Such simplification essentially pro-
vides the motivation for computing estimators. The overall
architecture for the resulting system is depicted in Figure 1:
we want to synthesize a controller for a setting with hidden
propositions that works correctly when supplied with infor-
mation from a given estimator. The following proposition
formalizes the idea.

Proposition 1. Let M be an estimator, ϕ be an LTL
specification over APobs ∪ APhid , and ϕ′ be an LTL specifi-
cation over APobs ∪APest such that (ϕ′ ∧G ρe ∧G ρs)→ ϕ.

If we can obtain a controller that reads APinp and APest ,
writes APact , and satisfies ϕ′ starting from x0 \ APhid when
running in parallel to M along the sequences of APobs that
induce infinite words by M, then the parallel composition
also satisfies ϕ starting from x0 along all inputs sequences
that satisfy G ρe.

Proof. Since M is guaranteed to satisfy Gρs along all
observable sequences that satisfy Gρe, we know that if ϕ′

holding together with Gρe (whose satisfaction is ensured by
the environment) and Gρs (whose satisfaction is ensured by
the estimator) implies ϕ, then any FSM for ϕ′ composed
with M must also satisfy ϕ on a word that satisfies Gρe
and for which M produces an infinite trace. Since we re-
quire M to do so for any trace that satisfies Gρe, the claim
follows.

Note that neither the estimator FSM nor the modified
specification ϕ′ in Proposition 1 deals with the hidden vari-
ables. Thus, these variables have effectively been removed
from the problem under consideration. This modification al-
lows us to apply standard reactive synthesis techniques for
problems under complete information. In order to account
for the definition of M, ϕ′ can be altered to require the
controller to be synthesized to simulate the behavior of M
along with its correct reaction to them.

Note that in a reasonable estimator specification, we have
that, for all x ⊆ APobs ∪ APhid ∪ APest and all x̄ ⊆ APobs ∪
APhid , the set {y ⊆ APest | (x, x̄ ∪ y) ∈ ρs} is non-empty,
as otherwise an estimator may be required to deadlock in

some cases. Henceforth, we assume ρs to have this property.
Likewise, we assume ρe to be deadlock-free.

In Proposition 1, we did not require an estimator to be
optimal, as the proposition is only concerned with soundness
and not with completeness. However, the better an estima-
tor is, the higher the chances are that the combination of ϕ′

andM is found to be realizable by the synthesis procedure.
It thus makes sense to focus on computing optimal estima-
tors for using them in a synthesis process. Optimal estima-
tors are not necessarily unique, however, raising the question
which estimator should be chosen among the optimal ones.
We will show in Section 5 that a preference relation ≤E
with the following property will ensure the uniqueness of an
optimal positional estimator.

Definition 5. Let ρs be an estimator specification over
APobs∪APest ∪APhid and ≤E be a preference relation among
2APest . We say that ≤E and ρs are monotone if ≤E forms a
lattice over 2APest and for all X ⊆ APobs ∪APest ∪APhid and
Y ⊆ APobs∪APhid , we have that {Y ′ ⊆ APest | (X,Y ∪Y ′) ∈
ρe} is a lattice together with ≤E. The maximal element of
this lattice is the same as of the lattice induced by ≤E over
2APest .

4. RUNNING EXAMPLE: CAR FOLLOW-
ING

We demonstrate the use of estimators in reactive synthesis
on a discrete model for the car following case study. The
state of the environment is represented by:

• the distance between the cars, dist ∈ {0, . . . , 85},

• the speed of the leader car, speedLeader ∈ {0, . . . , 15},

• and the speed of the follower car, speedFollower ∈
{0, . . . , 15}.

The output of the controller to be synthesized consists only
of the acceleration (accFollower) of the follower car, which
has a range of {−2,−1, 0, 1, 2}.

Both the speed of the leader car and the distance between
the cars are considered to be hidden variables, while the
follower car, whose controller we want to synthesize, has a
sensor to measure its speed. The follower receives an imper-
fect measurement distObserved ∈ {0, . . . , 85} of the distance
between the cars.

In summary, we have that APhid consists of boolean vari-
ables to encode the integer variables dist and speedLeader ,
while APinp encodes speedFollower and distObserved . The
proposition set APact deals with accFollower as the only
controllable integer variable.

The basis for computing an estimator is the known re-
lationship between the environment variables. The envi-
ronment specification ρe encodes the following restrictions
between current and next variable values during each time
step.

1. The speed of the follower car is updated according to
its chosen acceleration:

speedFollower ′ = speedFollower + accFollower .

2. The speed of the leader car changes only gradually:

speedLeader ′ = speedLeader ± 2.

3. The distance between the cars is updated according to
their speed values:

distance ′ = distance +
speedLeader + speedLeader ′

2

− speedFollower+speedFollower ′

2
± 1.

4. The observed distance can only deviate by at most 2
from the actual distance:

distance ′ = distObserved ′ ± 2.

Note that we saved the explicit modeling of the leader
car’s acceleration by using the formulation from the second
point above. The added noise (±1) in the third point ac-
counts for imprecision in motion and approximating the inte-
gral of the speed over time linearly. The first and third prop-
erties above are slightly simplified by not defining what hap-
pens when the values of speedFollower ′ and distance ′ need
to be out of their domains in order to satisfy the constraint.
For speedFollower , we encode ρe such that the variable has
saturation semantics, so negative values are rounded to 0,
and values greater than 15 are changed to 15. Thus, the
maximum speed of the two cars is 15. Similarly, distance ′

is saturated between 0 and 85. Here, however, we choose to
let the value 85 represent all actual physical values of ≥ 85.
Thus, a distance of 85 can stay the same in a time step re-
gardless of the speed of both cars (as the real distance may
be much larger), and at a transition at which the distance
drops below 85, the value of distance ′ may be higher than
the one defined by the equation from the third point above.

We choose to let the estimator always output lower and
upper bounds on the real distance between the cars and
the speed of the leader car. Formally, APest encodes
the four variables minDist , maxDist , minSpeedLeader , and
maxSpeedLeader that have the same domains as their under-
lying precise values. In order to enforce that the estimator
always updates these approximations with suitable values
after a transition, we encode the following constraints on
the values of these variables into ρs:

5. minDist ′ ≤ distance ′ ∧maxDist ′ ≥ distance ′.

6. minSpeedLeader ′ ≤ speedLeader ′∧maxSpeedLeader ′ ≥
speedLeader ′.

Finally, we state the controller specification. Intuitively,
we would require the leader to always keep a distance be-
tween some lower and some upper bound (that is smaller
than 85). However, due to the noisy distance update, the
leader car effectively has a speed range of {−1, . . . , 16} at
its disposal and can thus outrun the follower. Consequently,
requiring the distance between the cars to be in some range
other than {0, . . . , 85} results in a specification that cannot
be fulfilled. We instead require the controller to ensure the
following constraints:

7. distance ′ ≥ 5 ∨ (speedFollower = 0 ∧ speedFollower ′ =
0).

8. distance ′ < 85 ∨ (speedFollower ′ ≥ 15).

Therefore, the only case in which the minimum distance of 5
may be exceeded is when the follower car already came to
a stand-still and does not accelerate. In such a case, having

a distance smaller than 5 is intuitively not the fault of the
follower car. We apply the same idea for the upper bound:
given a nominal speed of the platoon of 8, while the follower
is trying to catch up by using a speed of 15, we allow the
distance to exceed a value of 85.

In order to remove the hidden propositions from the con-
troller specification, we strengthen the specification to the
following form:

9. (minDistance ′ ≥ 5) ∨ (speedFollower = 0 ∧
speedFollower ′ = 0).

10. (maxDistance ′ < 85) ∨ (speedFollower ′ ≥ 15).

Thus, we require the controller for the follower car to also
know that it meets its specification (as minDistance is al-
ways smaller or equal to the real distance by the estima-
tor specification and maxDistance satisfies a similar condi-
tion). Note that this modification satisfies the precondition
of Proposition 1, so we know that, if we find a controller
for this modified specification that works correctly in com-
bination with the estimator, the estimator and controller
together satisfy the original specification in an environment
that follows ρe.

Note that the estimates of the leader car’s speed are not
used in the specification. They are rather used to allow a
positional estimator to approximate the distance at runtime
more precisely.

5. COMPUTING THE ESTIMATORS
We now consider the question of how to compute posi-

tional estimators. If the estimator specification is mono-
tone with respect to its preference relation, the estimator
will be optimal among all positional estimators and unique.
The uniqueness property is helpful for using the estimator
in the scope of the synthesis process—iterating through all
possible optimal estimators during synthesis is costly, and
non-uniqueness would indicate a potential problem with the
estimator specification. Positional estimators in turn have
the advantage that they are bounded in size and can be
easily computed, as we show in the following.

The starting point for computing optimal positional es-
timators is to consider the possible evolutions of the envi-
ronment. As stated in Section 3, the transitions that the
environment can perform are specified in the relation ρe ⊆
(2APobs∪APhid)2. Likewise, the (safety) specification for the
estimator is stored in the relation ρs ⊆ (2APobs∪APhid∪APest)2.

Starting from the initial valuation x0, we first determine
the set of configurations of APobs , APhid , and APest that are
reachable by computing the set

R = µX.({x0} ∪ {x′ ⊆ APobs ∪ APhid ∪ APest | ∃x ∈ X.
(x \ APest , x

′ \ APest) ∈ ρe, (x, x′) ∈ ρs}),

where µ denotes the least fixpoint operation. This operation
saturates the set X with reachable states of the environment
and any estimator that satisfies its specification ρs. When
evaluating µ step-wise, new states x′ are added such that
there already is a state x in X from which x′ can be reached
along a transition that satisfies ρe and ρs. As ρe is not
concerned with estimation variables, they are removed from
x and x′ before checking if the transition is in ρe.

The final set R then represents the configurations of the
environment and an estimator for ρe and ρs that are poten-

tially reachable. The fact that the values of some proposi-
tions are hidden has not been taken into account so far.

A positional estimator has to offer the same next estimate
for every pair of configuration and next input that it cannot
distinguish (i.e., which only differ in their hidden variables).
Thus, we can compute the set of allowed transitions in a
positional estimator by determining the set

ρu ={(x, x′) ∈ (2APobs∪APest)2 | ∀y, y′ ⊆ 2APhid :

((x ∪ y) ∈ R ∧ ((x \ APest ∪ y),

(x′ \ APest ∪ y′))) ∈ ρe → ((x ∪ y), (x′ ∪ y′)) ∈ ρs}.

The expression defining ρu consists of two parts: it first
quantifies over the possible transitions (x, x′) in a positional
estimator. All transitions that are part of any valid
positional estimator are contained in the set ρu. To test if a
transition is valid, the expression further quantifies over all
hidden variable valuations (y, y′) along such a transition. If
x ∪ y is a reachable state in any estimator, and a transition
from (x∪ y) to (x′ ∪ y′) is allowed by ρe, then the definition
requires the new estimate to be correct w.r.t. ρs.

A positional estimator that only performs transitions from
ρu is guaranteed to be correct by definition, as ρu only con-
tains transitions that any estimator is allowed to take re-
gardless of any previous transitions. Note that the defini-
tion of ρu also ensures that any estimator that only performs
state transitions in ρu is history-free, as ρu quantifies over
states that are reachable in any estimator. Thus, an esti-
mator that only uses transitions in ρu cannot use its state
space to track information other than the last input and the
last estimate.

Lemma 1. Let ρu be an estimator transition relation de-
fined as above. Then, the transition relation

ρ̂u = {(x, x′) ∈ ρu : x′|APest = min{x′′|APest : (x, x′′) ∈ ρu,
= {x′ \ APest = x′′ \ APest}}

represents the transitions of a unique optimal positional es-
timator.

Proof. Assume the converse, namely that ρ̂u is not
uniquely optimal. As we can describe a positional estima-
tor by a transition relation in its (fixed) state space, this
means that there exists a transition relation ρ̂′u that of-
fers a different approximation for some combination (x, x̄) ∈
2APobs∪APest × 2APobs that is not worse (with respect to ≤E)
than the (unique) approximation that ρ̂u offers.

Let y ⊆ APest be the estimate offered by ρ̂u, i.e., for which
we have (x, x̄∪ y) ∈ ρ̂u, and y′ ⊆ APest be the estimate that
ρ̂′u offers, i.e., for which we have (x, x̄ ∪ y′) ∈ ρ̂′u. If ρ̂u is
not uniquely optimal, then the inequality y ≤E y′ does not
hold.

As y is guaranteed to be the unique least estimate avail-
able in ρu (by the definition of ρ̂u and the requirement that
≤E induces a lattice), there exists some (valid) estimate that
is not in ρu. However, as ρu is defined to contain all history-
free estimates that are valid from the reachable configura-
tions in R if the environment uses only transitions in ρe, we
have derived a contradiction.

By definition, if ρu does not offer a next estimate for some
state s and some next observable proposition valuation x,
receiving x in state s witnesses the violation of ρu by the
environment.

Let us conclude the section by giving another motivation
for why positional estimators must be history-free, as spec-
ified in Definition 2. This requirement of a positional esti-
mator is crucially needed for the proof of Lemma 1. Intu-
itively, the non-satisfaction of the requirement would allow
the estimator to strategically worsen some approximations
in order to decrease the number of cases in which certain
estimates are reachable. This choice by the estimator limits
the number of incoming edges into the state that represents
the estimate, and thus a tighter estimate could be given in
the next step. Consequently, optimal estimators would no
longer be unique. From a practical perspective, uniqueness
is however a favorable property. In particular, whenever in
the later synthesis step for the controller, the specification is
found to be unrealizable, uniqueness of the estimator means
that unrealizability is not due to having picked the wrong
estimator. So there is no need to iterate over multiple pos-
sible estimators and to try synthesizing a controller for each
of them.

6. ESTIMATOR-BASED GENERALIZED
REACTIVITY(1) SYNTHESIS

In order to synthesize a system from a generalized reactiv-
ity(1) specification ϕ that works correctly when using input
from an estimator (as depicted in Figure 1), we can encode
the estimator’s structure into ϕ. A synthesized system for
the modified specification is then forced to produce the esti-
mator’s execution along with the system’s own choices, and
thus can work stand-alone without the estimator finite-state
machine. In this way, the synthesis procedure also knows
what outputs of the estimator it has to expect under partic-
ular observations.

The shape of the estimators defined according to the con-
struction from the previous section is well-suited to be used
in the context of generalized reactivity(1) synthesis. Recall
that GR(1) specifications are always structured as given in
equation (1). Let (V)A be a shorthand for the LTL formula∧
x∈V ∩A x ∧

∧
x∈A,x/∈V ¬x for some sets V and A. Incorpo-

rating the estimator with the transition relation ρ̂u can be
done by adding the property

G

 ∨
(x,x′)∈ρ̂u

(x)APobs∪APest ∧ X(x′)APobs∪APest


as a conjunct to ϕgs . Likewise, for x0 being the initial
(known) valuation of all variables in AP, we add (x0)APinp to
ϕai and (x0)APest to ϕgi in order to let the estimator start off
from the correct variable valuations. As we require the syn-
thesized controller to simulate the estimator, we also add all
elements of APest to APact , so that the controller can choose
the estimates.

As described in Proposition 1, in order to allow the syn-
thesis problem to be treated as one over complete infor-
mation, the specification of the system to be constructed
needs to be altered in order to remove all references to
APhid . The conjuncts introduced by encoding the estima-
tor into ϕ do not use variables from APhid , so only the
references already present in the original specification need
to be changed. To ensure soundness when doing so, it
follows from the description in Proposition 1 that the as-
sumptions may only be weakened, while the guarantees
may only be strengthened. We have seen an example for

the latter in Section 4, where the constraint (distance ′ ≥
5) ∨ (speedFollower = 0 ∧ speedFollower ′ = 0) was re-
placed by constraint (minDistance ′ ≥ 5)∨ (speedFollower =
0 ∧ speedFollower ′ = 0). As the estimator specification en-
sures that minDistance is always smaller than or equal to the
actual (non-observable) distance, this strenthening is valid.
If (distance ′ ≥ 5∨ψ) was a constraint in the assumptions for
some ψ, a suitable weaking would be (maxDistance ′ ≥ 5∨ψ).

Since the system to be synthesized only needs to work
correctly in environments that behave according to ρe, we
have to modify ϕ further to account for this fact: in case ϕ
does not contain constraints over the evolution of the envi-
ronment already, constraints that are implied by ρe can be
added to allow the synthesis engine to ignore inadmissible
observable inputs. In the case in which ϕ already has some
assumptions that implement ρe, they have to be replaced by
constraints that do not refer to variables in APhid .

In both cases, the new assumptions can be mined from ρu
(or equivalently from ρ̂u). That is, if, for some combination
of the current configuration and next observable input, there
does not exist a suitable estimate in ρu, then ρe is violated
as we showed in the previous section. Thus, we can add the
following constraint to ϕas :

G

 ∨
(x,x′)∈ρu

(x)APobs∪APest ∧ X (x′)APobs

 .

Finally, let us reconsider the motivation for using general-
ized reactivity(1) synthesis to obtain correct-by-construction
controllers and compare the complexity of our estimator-
based synthesis approach to standard generalized reactiv-
ity(1) synthesis under incomplete information.

Firstly, generalized reactivity(1) specifications allow a
simple BDD-based synthesis algorithm that has shown its
good scalability in practice many times (see, e.g., [2]). The
parts of the specification changed according to the procedure
from this section can be built directly as BDDs, thus oblivi-
ating the need to enumerate all elements of ρ̂u explicitly. A
requirement for this step is however that ρ̂u is represented
symbolically. Such a symbolic encoding is indeed possible
as all operations to compute ρ̂u outlined in the previous sec-
tion can be implemented with BDDs using only standard
operations, provided that ρs and ρe are also represented as
BDDs. If we assume that both elements are parsed from
formal specifications, this requirement is easy to fulfill.

For the comparison of time complexities, observe that af-
ter following the steps described in this section, we have
a standard GR(1) synthesis problem under complete infor-
mation, which is solvable in time exponential in the num-
ber of atomic propositions. Also, all operations for estima-
tor computation in the previous section can be performed
in exponential time. As the estimator size is constant, we
obtain a time complexity that is exponential in |APinp ∪
APest ∪ APact ∪ APhid |. As (standard) generalized reactiv-
ity(1) synthesis under incomplete information has a doubly-
exponential time complexity (in |APinp ∪APact ∪APhid |), we
save one exponent at the expense of the added estimation
variables. So unless APest is very large, we obtain a signifi-
cantly reduced complexity. Note that we could require the
estimator to encode the belief space of the system precisely,
leading to an exponential number of variables in APest and
a doubly-exponential overall complexity again.

The above complexity bounds are independent of the spec-
ification size unless it is super-exponential in the number of
propositions. Note that GR(1) specifications can easily be
distilled to at most exponential size.

7. STATE SPACE REDUCTION IN
ESTIMATOR-BASED SYNTHESIS

The state space of a positional estimator, namely
2APobs∪APest , can be large. While in practice, it is not uncom-
mon that only a fraction of the states is reachable from the
initial state of the estimator, symbolic reasoning techniques
(such as using BDDs) cannot benefit from this fact imme-
diately. Since such techniques are the driving factor of the
scalability of modern synthesis algorithms, and thus need
to be catered for, the question arises whether, in the scope
of estimator computation, we can perform some specialized
steps that allow to exploit the sparseness of the reachable
states in the estimator.

Here, we propose to use the relationships between observ-
able and estimate variables in order to reduce the number
of elements in APobs ∪APest , which compresses the symbolic
representation of the state space so that it can be exploited
by symbolic reasoning techniques.

Many synthesis problems exhibit such relationships. For
instance, in our running example, we know that the dif-
ference between distance and observedDistance is at most
2 which in turn implies that the differences between the
estimates minDistance and observedDistance are also at
most 2 in every step of the estimator’s evolution. We
can thus replace the variable minDistance by an integer
variable minDistanceDelta and replace all occurrences of
minDistance in the specification by observedDistance +
minDistanceDelta − 2. Instead of a domain of {0, . . . , 85}
for minDistance, we only need a domain of {0, . . . , 5} for
minDistanceDelta. Hence, encoding minDistanceDelta into
BDDs takes four fewer bits than encoding minDistance. We
can also compress maxDistance in the same way.

For our experiments in the next section, we did not
perform state space compression other than replacing
minDistance and maxDistance by minDistanceDelta and
maxDistanceDelta. However, it is easy to perform a reach-
ability check of the states in the estimator in order to dis-
cover relationships between the variables that are not obvi-
ous from the specification, and in fact our implementation
can uncover these, so that they can be used to speed up the
synthesis step (after re-computing the estimator for the new
compressed version of its specification).

8. EXPERIMENTS ON THE RUNNING EX-
AMPLE

We have implemented the techniques from Section 5 as
a plug-in for the synthesis tool slugs [7] and use the same
tool for performing the later synthesis step, as described in
Section 6. All computations reported on in the following
were single-threaded and performed on an AMD Opteron
2.8GHz computer, running Linux (x64) with 32 GB of RAM.

Starting from an initial distance of 15 between the cars,
both cars having an initial speed of 3, and performing state
space compression on the distance between the cars as de-
scribed in the previous section, computing the estimator
for the scenario described in Section 4 takes 21.38 minutes.

. . .



84
15
2
13
15
82
83





84
15
2
12
15
82
84





85
15
2
12
15
83
85





85
15
2
10
15
83
85





85
15
2
8
15
83
85





85
15
2
6
15
83
85





85
15
2
4
15
83
85





85
15
2
2
15
83
85





84
15
0
0
15
82
85





68
15
−2
0
2
69
70





56
13
−2
0
4
54
58





40
11
−2
0
2
41
42





32
9
−2
0
4
30
34





20
7
−2
0
2
21
22





16
5
−2
0
4
14
18





8
3
−2
0
2
9
10





8
1
−2
0
4
6
10





4
0
−2
?
?
?
?




84
15
−1
0
15
82
85





84
14
?
?
?
?
?


Meaning of the

encoding
:



observedDistance
speedFollower
accFollower

minSpeedLeader
maxSpeedLeader

minDist
maxDist



Figure 2: Two suffixes of example traces in a counter-strategy that witnesses the unrealizability of the
specification described in Section 4. The traces start in the same way and branch at some point due to a
different acceleration chosen by the controller. Question marks indicate that there is no possible valuation
to the next output variables of the controller that would not violate the specification.

Checking the realizability of the controller specification us-
ing the computed estimator takes 28.04 minutes.

It turns out that the specification is unrealizable, meaning
that the environment can drive the system into violating its
specification. Two traces of a counter-strategy for the envi-
ronment, which we depict in Figure 2, explain this fact. In
the figure, input by the environment is shown above the col-
umn vector bars, whereas output by the controller is shown
below the bars. Only the acceleration can actively be chosen
by the controller, as the other four output variables repre-
sent estimates, which are governed and fixed by ρ̂u.

Initially, the environment chooses to gradually raise the
observed distance from 15 to 64—the corresponding first
20 rounds of the execution are not shown in the figure for
brevity. In the trace, the system has chosen to accelerate in
order to try to satisfy the requirement that (maxDistance ′ <
85 ∨ (speedFollower ′ ≥ 15)) shall always hold. Note that
once a follower car speed of 15 has been reached, further
acceleration chosen by the controller has no effect.

As soon as the distance of 85 has been reached, which ab-
stracts from all possible distances greater than or equal to
85, the estimator’s knowledge about the speed of the leader
car degrades gradually. When minSpeedLeader = 2 and
maxSpeedLeader = 15 has been reached (i.e., the estima-
tor’s knowledge is very coarse), the environment chooses an
observed value of 84. We consider two ways for the system
to react. In the first case, the controller continues to main-
tain a follower car speed of 15 for one more time step. In
this case, the top trace shows that there is not enough time
any more for the follower car to still be able to come to a
stand-still before the minimum distance drops below 5 in
case it turns out that the leader car has a very low speed at
that point. This behavior violates the requirement that the
follower should have already come to a stand-still before the
distance between the cars drops below 5. In case the con-
troller chooses to only decelerate slightly, the environment
may actually keep the observed distance of 84 for the next
step, which may mean that the real distance is still 85 and
the measurement of 84 was only off by one. At this point,
the constraint (maxDistance ′ < 85 ∨ (speedFollower ′ ≥ 15))
is violated. So in both cases, the synthesized system can

only either violate the specification or produce incorrect es-
timates.

Changing the guarantee (maxDistance ′ < 85 ∨
(speedFollower ′ ≥ 15)) to (maxDistance ′ < 85 ∨
(speedFollower ′ ≥ 14)) makes the specification realizable.
The computation time needed the check realizability was
27.88 minutes in this case.

As a modification, we would like the follower car to stay
as close to the leading car as possible while the leading car is
running at a nominal speed of 8, which we assume to be the
standard speed on the street. In order to encode this con-
straint into a generalized reactivity(1) specification, we add
an output proposition called inCruiseMode. The controller
is required to always eventually enter cruise mode, in which
it has to maintain a distance of at most b for some b ∈ N. The
cruise mode may only be left when it is clear that the leader
does not drive with a speed of 8 (i.e., if the estimator com-
putes that minSpeedLeader > 8 or maxSpeedLeader < 8).

As the cruise mode cannot be enforced when the leader
gets out of sight (having a distance ≥ 85), the follower does
not need to eventually enter cruise mode if the leader is out
of sight infinitely often.

By performing a binary search on the value of b, we find
out that all values of b greater than or equal to 73 can be en-
forced. The computation time for the search (using the same
estimator as before and performing 6 realizability checks in
total) was 459.86 minutes.

Note that we picked the maximum distance value of 85
on purpose, as it yields the interesting behavior in Figure 2.
If we set the maximum distance to 127, which fully utilizes
the propositions that we allocated for encoding the observed
distance and the estimates on the real distance between the
cars, then modifying the specification to only require a fol-
lower speed that is greater than or equal to 14 when the
leader car gets out of sight is not necessary—the original
specification is already realizable (28.36 minutes of time for
computing the estimator and 16.13 minutes for checking re-
alizability). The smallest possible value of b that yields a
realizable specification when adding cruise mode is still 73
in this case (computation time for the binary search: 629.02
minutes, 7 realizability checks in total).

We could not compare our approach to using a standard
belief-set construction in GR(1) synthesis instead of estima-
tors for coping with the incomplete information. The belief
space has 286·16 states, which cannot be dealt with by any
current synthesis approach.

9. CONCLUSION & DISCUSSION
We presented a notion of estimator which—in certain

cases—decouples incomplete-information reactive synthesis
into two steps: (1) the estimator construction step for es-
tablishing knowledge about the unobserved variables that is
salient for the synthesis of controllers to satisfy given tempo-
ral logic specifications and (2) the synthesis step which relies
on the knowledge generated by the estimator and boils down
to conventional, complete-information synthesis.

Estimators help to abstract out from full belief-set con-
structions commonly used for reasoning about partialness of
information. While sound-and-precise estimators may pro-
vide tighter results, positionality of our estimators provides
computational tractability. While generalized(1) synthesis
under incomplete information has a doubly-exponential time
complexity, using estimators reduces complexity to singly-
exponential time. This tractability comes at the expense of
potential loss of precision. Hence, such estimators provide a
trade-off between complexity and precision. Moreover, they
are relatively straightforward to compute. The “position-
ality” restriction does not only allow to integrate them into
generalized reactivity(1) synthesis but also helps with estab-
lishing a notion of a “best” estimator.

Our estimator definition is general enough to also include
optimal non-positional estimators. Finding compact repre-
sentations of such estimators remains as an open question.
Furthermore, while we discussed estimator synthesis in a
purely discrete setting, the estimator construction technique
will generalize to include variables that are not necessarily
restricted to be discrete valued. For example, scenarios with
real-valued properties and updates that can be expressed as
linear functions could be analyzed using and-inverter graphs
over linear functions (LinAIGs) [5] as symbolic reasoning
engine. In that case, the state space compression technique
we discussed can still be applied effectively.

While the algorithms we proposed obey relatively desir-
able theoretical complexity bounds, scalability remains as
a limitation as evidenced by the “long” computation times
in the case studies. We emphasize though that the current
implementation has not been optimized to handle integer-
valued variables and expect such optimizations to signifi-
cantly reduce the practical computation times.

Acknowledgements
The first author was supported by the Institutional Strat-
egy of the University of Bremen, funded by the German
Excellence Initiative. The second author was partially sup-
ported by AFOSR grant # FA9550-12-1-0302, ONR grant
N000141310778, and NSF CNS award # 1446479.

The authors thank Bernd Finkbeiner for discussions dur-
ing the early phases of this work.

10. REFERENCES
[1] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and

A. L. Sangiovanni-Vincentelli. Design of observers for
hybrid systems. In HSCC, pages 76–89. 2002.

[2] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman,
A. Pnueli, and M. Weiglhofer. Specify, compile, run:
Hardware from PSL. Electr. Notes Theor. Comput.
Sci., 190(4):3–16, 2007.

[3] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and
Y. Sa’ar. Synthesis of reactive(1) designs. J. Comput.
Syst. Sci., 78(3):911–938, 2012.

[4] P. E. Caines, R. Greiner, and S. Wang. Classical and
logic-based dynamic observers for finite automata.
IMA Journal of Mathematical Control and
Information, 8(1):45–80, 1991.

[5] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang,
F. Pigorsch, C. Scholl, U. Waldmann, and B. Wirtz.
Exact state set representations in the verification of
linear hybrid systems with large discrete state space.
In ATVA, pages 425–440, 2007.

[6] D. Delvecchio, R. M. Murray, and E. Klavins. Discrete
state estimators for systems on a lattice. Automatica,
42(2):271–285, 2006.

[7] R. Ehlers, V. Raman, and C. Finucane. Slugs GR(1)
synthesizer, 2013–2015. Available at
https://github.com/LTLMoP/slugs.

[8] G. Kalyon, T. L. Gall, H. Marchand, and T. Massart.
Global state estimates for distributed systems. In
Formal Techniques for Distributed Systems, pages
198–212, 2011.

[9] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu.
Correct, reactive robot control from abstraction and
temporal logic specifications. IEEE Robotics and
Automation Magazine, 18(3):65–74, 2011.

[10] O. Kupferman and M. Vardi. Synthesis with
incomplete informatio. In 2nd International
Conference on Temporal Logic, pages 91–106,
Manchester, July 1997.

[11] D. G. Luenberger. Optimization by vector space
methods. John Wiley & Sons, 1969.

[12] M. Oishi, I. Hwang, and C. Tomlin. Immediate
observability of discrete event systems with
application to user-interface design. In CDC, pages
2665–2672, 2003.

[13] C. M. Ozveren and A. S. Willsky. Observability of
discrete event dynamic systems. IEEE Transactions
on Automatic Control, 35(7):797–806, 1990.

[14] J. H. Reif. The complexity of two-player games of
incomplete information. Journal of Computer and
System Sciences, 29(2):274 – 301, 1984.

[15] R. D. Smallwood and E. J. Sondik. The optimal con-
trol of partially observable markov processes over a fi-
nite horizon. Operations Research, 21:1071–1088, 1973.

[16] S. Sohail and F. Somenzi. Safety first: a two-stage
algorithm for the synthesis of reactive systems. STTT,
15(5-6):433–454, 2013.

[17] D. C. Tarraf, A. Megretski, and M. A. Dahleh. Finite
approximations of switched homogeneous systems for
controller synthesis. IEEE Trans. Automat. Contr.,
56(5):1140–1145, 2011.

[18] Y. Velner and A. Rabinovich. Church synthesis
problem for noisy input. In FOSSACS, pages 275–289,
2011.

[19] A. Walker and L. Ryzhyk. Predicate abstraction for
reactive synthesis. In FMCAD, 2014.

https://github.com/LTLMoP/slugs

APPENDIX
We provide some additional information here that may be
of interest to a few readers. In particular, we shortly discuss
why GR(1) synthesis has an exponential time complexity,
and provide a proof for doubly-exponential time complexity
of the problem in case of incomplete information.

A Note on the Complexity of GR(1) Synthesis
In the introduction in the main part of the paper, we state
that GR(1) synthesis has a singly-exponential time complex-
ity, which is in contrast to other paper in which it is stated
that the time complexity is “polynomial in the state space
of the design.”

The “state space of the design” in this statement is how-
ever exponential in the number of atomic propositions; hence
we get an overall exponential complexity.1

Complexity of GR(1) Synthesis under Incom-
plete Information
Recall that one of the motivations for computing estimators
is that unlike for full linear temporal logic (LTL), the syn-
thesis problem for GR(1) specifications has a higher com-
plexity under incomplete information than under full in-
formation. Let us formally prove this now. We reduce
the acceptance problem of an alternating exponential-space
Turing machine to the GR(1) synthesis problem under in-
complete information. As AEXPSPACE=2EXPTIME2, the
claim that doubly-exponential time is needed for GR(1) syn-
thesis under incomplete information then follows. The proof
is essentially an adaptation of the extended computation tree
logic reactive synthesis 2EXPTIME-hardness proof given by
Vardi and Stockmeyer3, which in turn builds on ideas by
Fischer and Ladner4.

Theorem 1. Let f : N → N be a function such that
f(k) > k for all k ∈ N, and M = (Q,Σ,Γ, δ, q0, g), be a

2f(k)-space bounded alternating Turing machine, where Q is
the set of states, Σ is the input alphabet, Γ is the tape al-
phabet (which is a superset of Σ), δ : Q × Γ → (Q × Γ ×
{L,U,R})2 is the transition function of M , q0 ∈ Q is its ini-
tial state, and g : Q→ {accept , reject , existential , universal}
is a function that denotes a partitioning of the states into
accepting, rejecting, existentially branching, and universally
branching states.

We can reduce the acceptance of a word w ∈ Σk by M to
the GR(1) synthesis problem under incomplete information
with O(log2 |Γ| + log2 |Q| + f(k)) many input propositions,
hidden propositions and output propositions and a specifica-
tion of length polynomial in f(k) + |Γ|+ |Q|.

Proof. Without loss of generality, we assume that from
all rejecting and accepting states, M only has transitions
that let M ’s head stay in place and not change its state or

1For a full proof, see Section 12.3.1 of R. Ehlers: Symmetric
and Efficient Synthesis, Phd Thesis, Saarland University
2See Ashok K. Chandra, Dexter Kozen, Larry J. Stock-
meyer: Alternation. J. ACM 28(1): 114-133 (1981)
3See Moshe Y. Vardi, Larry J. Stockmeyer: Improved Upper
and Lower Bounds for Modal Logics of Programs: Prelimi-
nary Report. STOC 1985: 240-251
4See Michael J. Fischer, Richard E. Ladner: Propositional
Dynamic Logic of Regular Programs. J. Comput. Syst. Sci.
18(2): 194-211 (1979)

current tape cell content after reaching the state. M is eas-
ily modified to have this property (without changing the size
of Q or the set of words accepted by M). Additionally, we
assume that Σ has an empty-tape symbol called ⊥ and that
M ’s tape head never moves left of tape position 0 or right
of tape position 2f(k) − 1. A 2f(k)-space bounded alternat-
ing Turing machine M can always be modified to have this
property without a super-polynomial blow-up in the size of
the Turing machine.

In the following, we use the symbol to denote a place-
holder for a value that is not of importance. The symbol ⊕
is used to represent mutual exclusion in LTL. An expression
ψ1 ⊕ ψ2 can be replaced by ψ1 ∧ ¬ψ2 ∨ ¬ψ1 ∧ ψ2.

Specification Construction.
We construct the GR(1) specification

ϕ = (ϕai ∧ ϕas ∧ ϕal)→s (ϕgi ∧ ϕ
g
s ∧ ϕgl). (2)

over the visible input propositions API , the hidden input
propositions APH , and the output propositions APO that
forces the controller to be constructed in synthesis to simu-
late an accepting run tree of the alternating Turing machine.

We first of all set API = {u} to be the set of observable
input variables. Furthermore, we set:

APH = {matchS1 ,matchS2 ,matchZ1 ,matchZ2 ,matchΓ
1 ,matchΓ

2 ,

t1, t2, . . . , tf(k),m1, . . . ,mn, v1, . . . , vdlog2(|Q|)e},

where n = dlog2(|Γ|)e. The proposition u is used as exter-
nal input for deciding which of the two possible transitions
to take from universally branching states in the Turing ma-
chine. The meaning of the match variables is explained later.
The variables t1, t2, . . . , tf(k) encode one position along a

2f(k)-long tape. The variables m1, . . . ,mn are used to store
some (possible) tape cell content at the position stated by
the t variables. The v variables store some specific state.

For the output of the controller, we choose

APO = {r, x1, x2, . . . , xf(k), y1, . . . , yn, z1, z2, . . . , zf(k),

s1, . . . , sdlog2(|Q|)e}

as the proposition set. Here, r is used as the signal for some
“initialization phase.” The propositions x1, x2, . . . , xf(k) rep-
resent the current counter for the tape position. The propo-
sitions y1, . . . , yn encode the tape content at the respective
position. The propositions z1, z2, . . . , zf(k) single out one
particular tape cell as the current tape head position. Fi-
nally, the propositions s1, . . . , sdlog2(|Q|)e are used to encode
the current state.

Using some arbitrary encoding, a set of variables {ai}i∈I
for some index set I, and some value v that can be encoded
into the a variables, we use the notation (v)a to represent an
LTL formula that is free of temporal operators and asserts
that the variables a1, a2, . . . encode the value v.

We use the following specification parts:

ϕai = ¬matchS1 ∧ ¬matchS2 ∧ ¬matchZ1 ∧ ¬matchZ2

∧ ¬matchΓ
1 ∧ ¬matchΓ

2

ϕas = ϕas,1 ∧ ϕas,2 ∧ ϕas,3
ϕal = true

ϕgi = r ∧ (0)x

ϕgs = ϕgs,1 ∧ ϕ
g
s,2 ∧ ϕ

g
s,3 ∧ ϕ

g
s,4

ϕgl = GF

 ∨
q∈Q,g(q)=accept

(q)s


Here, ϕgs,1, ϕgs,2, ϕgs,3, ϕgs,4, ϕas,1, ϕas,2, and ϕas,3 are place-
holders that we define below. The formula ϕgl encodes that
the controller must always eventually output the encoding of
an accepting state of the Turing machine. Initially, r = true
encodes that the machine’s execution has just started.

Safety guarantee part ϕgs,1 encodes that x1, x2, . . . , xf(k)

represents a cyclic counter and that r is set until the counter
cycled through once.

ϕgs,1 = G(X(x1)⊕ x1)

∧
∧

j∈{1,...,f(k)−1}

G(X(xj+1)↔ (xj+1 ⊕ (xj ∧ ¬X(xj))))

∧ G(Xr ↔ (r ∧ ¬X(0)x))

The guarantees ϕgs,1 ensure that we can use the x-variables

for encoding addresses to locations on the 2f(k) cell long
tape. Initially, this tape shall have w written on it, which is
encoded into ϕgs,2.

ϕgs,2 =
∧

j∈{0,...,k−1}

G(r ∧ (j)x → (wj)y)

∧ G

r ∧
 ∧
i∈{0,...,k−1}

¬(i)x

→ (⊥)y


∧ G(r → (q0)s)

∧ G(r → (0)z)

Additionally, ϕgs,2 encodes that initially, the Turing machine
shall start in state q0 and with its head on tape cell 0.

Part ϕgs,3 now states that the current state and the po-
sition of the tape head must only change when the counter
x overflows. This allows us to assume that both variables
stay constant while the complete tape content of the Turing
machine is printed for one step of its computation.

ϕgs,3 = G(¬X(0)x →
∧

i∈1,...,dlog2(|Q|)e

si ↔ X si)

∧ G(¬X(0)x →
∧

i∈1,...,f(k)

zi ↔ X zi)

So far, we did not state that the actual computation of the
Turing machine has to be simulated correctly. It is quite
tricky to encode this into a generalized reactivity(1) speci-
fication, as properties such as “at the same position of the
tape after the next tape position counter reset, the tape cell
content is the same as it is now” cannot be encoded into
the LTL fragment supported by GR(1) synthesis. We can
however make use of incomplete information to encode such
a property in an indirect way.

First of all, we require the environment to always keep
its values for t1, t2, . . . , tf(k),m1, . . . ,mn, v1, . . . , vdlog2(|Q|)e
fixed after their initial values have been chosen:

ϕas,1 =
∧

i∈{1,...,f(k)}

G(ti ↔ Xti)

∧
∧

i∈{1,...,n}

G(mi ↔ Xmi)

∧
∧

i∈1,...,dlog2(|Q|)e

G(vi ↔ X vi)

Since no constraints on the initial values of these variables
exist, they can be arbitrary.

Then, we require the environment to track with the
matchΓ variables whether at the tape position encoded by
the t variables, the tape cell content matched the one en-
coded into the m variables. Variable matchΓ

1 always gives
this information for the previous tape content, while the
matchΓ

2 variables do so for the current tape content. In the
same manner, the matchS variables track whether the state
encoded by the s variables matched the one encoded by the v
variables, and the matchZ variables track whether the Tur-
ing machine tape head position was the same as the tape
position encoded into the hidden t variables.

ϕas,2 = G(X(0)x → (XmatchS1 ↔ matchS2))

∧ G(X(0)x → (XmatchZ1 ↔ matchZ2))

∧ G(X(0)x → (XmatchΓ
1 ↔ matchΓ

2))

∧ G(¬X(0)x → (XmatchS1 ↔ matchS1))

∧ G(¬X(0)x → (XmatchZ1 ↔ matchZ1))

∧ G(¬X(0)x → (XmatchΓ
1 ↔ matchΓ

1))

∧ G(((¬matchS2 ∨ X(0)x) ∧ ¬(s = v))↔ X¬matchS2)

∧ G(((¬matchZ2 ∨ X(0)x) ∧ ¬(t = z))↔ X¬matchZ2)

∧ G(((¬matchΓ
2 ∨ X(0)x) ∧ ¬(t = x ∧m = y))

↔ X¬matchΓ
2)

We used the abbreviations t = x, t = z, m = y, and
s = v to simplify the equation. They mean that the t/t/m/s
and x/z/y/v variables have the same values and can be ex-
panded to

∧
i∈{0,...,f(k)}(ti ↔ xi) /

∧
i∈{0,...,f(k)}(ti ↔ zi) /∧

i∈{1,...,n}(mi ↔ yi) /
∧
i∈{1,...,dlog2(|Q|)e}(si ↔ vi), respec-

tively.
We can now enforce that the system simulates the run of

the Turing machine correctly and that rejecting states are
never reached. The safety guarantees ϕgs,4 are devoted to
ensuring this. To shorten the description of ϕgs,4, we use the
following sets:

A0 ={(q, char , q′, char ′, d) ∈ (Q× Γ)2 × {L,U,R} |
(q′, char ′, d, , ,) = δ(q, char), g(q) = existential}

∪{(q, char , q′, char ′, d) ∈ (Q× Γ)2 × {L,U,R} |
(, , , q′, char ′, d) = δ(q, char), g(q) = existential}

∪{(q, char , q′, char ′, d) ∈ (Q× Γ)2 × {L,U,R} |
(q′, char ′, d, , ,) = δ(q, char), g(q) = universal}

A1 ={(q, char , q′, char ′, d) ∈ (Q× Γ)2 × {L,U,R} |
(q′, char ′, d, , ,) = δ(q, char), g(q) = existential}

∪{(q, char , q′, char ′, d) ∈ (Q× Γ)2 × {L,U,R} |
(, , , q′, char ′, d) = δ(q, char), g(q) = existential}

∪{(q, char , q′, char ′, d) ∈ (Q× Γ)2 × {L,U,R} |
(, , , q′, char ′, d) = δ(q, char), g(q) = universal}

We now set:

ϕgs,4 = G(matchS2 ∧matchZ2 ∧matchΓ
2 ∧ (t = x) ∧ ¬u→

∨
(q,char,q′,char′,d)∈A0

((q)v ∧ (char)m ∧ (q′)s ∧ (char ′)y ∧ ψd))

∧ G(matchS2 ∧matchZ2 ∧matchΓ
2 ∧ (t = x) ∧ u→∨

(q,char,q′,char′,d)∈A1

((q)v ∧ (char)m ∧ (q′)s ∧ (char ′)y ∧ ψd))

∧ G(¬matchZ2 ∧matchΓ
2 ∧ (t = x)→ m = y)

In this property, the sub-formula ψd for d ∈ {L,U,R} en-
codes z = t + 1 if d = R, z = t − 1 if d = L, or z = t if
d = U . All of these can be represented in LTL:

ψR = z1 ⊕ t1

∧
∧

i∈{1,...,f(k)−1}

(zi+1 ↔ (ti+1 ⊕
∧
j≤i

¬zj))

ψU =
∧

i∈{1,...,f(k)}

(zi ↔ ti)

ψL = t1 ⊕ z1

∧
∧

i∈{1,...,f(k)−1}

(ti+1 ↔ (zi+1 ⊕
∧
j≤i

¬tj))

In order to ensure that the environment has to keep the
value of u constant while one step of the Turing machine is
executed, we finally set:

ϕas,3 = G(¬(f(k))x → (u↔ Xu))

Note that APH , API , APO, and ϕ are of size polynomial
in f(k), so if f(k) is in turn polynomial in k, so is the overall
specification.

Correctness.
Let us now show that ϕ is realizable if and only if M

accepts w.
⇒: First of all, consider the case that M accepts w. Then,

there exists an execution tree for M and w that branches at
universal states and that is accepting along every branch of
the tree. The specification can then be realized by simulat-
ing this tree and sequentially outputting the tape contents
along a branch of the tree. The specification states that the
value of the input proposition u dictates which direction to
take whenever the tree branches universally. During every
state transition, the system outputs the complete tape con-
tent while the x counter cycles through the tape cell num-
bers. While a tape is printed, the state output is always the
same - it can change whenever the tape cell counter is reset.

If the tree is valid, then regardless of the values of the v,
t, and m variables, the specification ϕ is satisfied, as these
values select some tape position, tape content, and state for
which the system must operate correctly. Since the system
performs a full, complete, correct simulation of the Turing

machine, the values of these hidden propositions thus do not
matter.

All in all, this behavior satisfies the guarantees if the en-
vironment satisfies its assumptions.
⇐: Now assume that a controller is given that satisfies

the specification. The specification makes sure that the x
counter always cycles through the counter values for the tape
positions. Only during the first cycle, r is set, and while r
is set, the initial tape content is produced. At the same
time, the state put out is the initial one and the tape head
cell counter z points to cell 0. Since a state put out by the
system needs to stay the same until the x counter flips over,
the state encoded into s stays the same until the tape has
been printed in its entirety.

Now assume that the counter has just cycled through and
thus the state put out by the system may have changed. The
system has to assume that the environment may have set the
hidden variables such that the previous state and the previ-
ous tape cell content at the tape head was watched. Thus,
the safety guarantee ϕgs,4 requires the system to output the
next tape position, the new tape cell content at the previous
position, and the new state correctly. For universal states,
the environment variable u dictates which of the possible
Turing machine transitions shall be taken.

Since the system however also has to assume that it may
be possible that any other tape position is watched by the
hidden variables, it has to copy the content of the other,
unmodified tape cells to the next round due to ϕgs,4 and ϕas,2.
This means that the system has to simulate the first step of
the Turing machine’s execution. Note that in the step after
that, the contents of the hidden variables are still unknown
to the controller. This means that again, a correct step in
the execution of the Turing machine has to be simulated
afterwards. By induction, it follows that all steps need to
be simulated correctly, up to the point that the encoding of
an accepting or rejecting state is printed by the controller.
By the fact that accepting and rejecting states are absorbing
and due to ϕgl , rejecting states must never be visited. Runs
of the controller along which no accepting Turing machine
state is ever reached are also rejecting by ϕgl .

So the controller has to output correct computations of
the Turing machine until an accepting state of the Turing
machine is reached. Since the machine must furthermore
obey the environment’s choice from universal states, the re-
alizability of a specification means that there exists a con-
troller that outputs an accepting execution tree for the alter-
nating Turing machine along its possible executions, which
witnesses the acceptance of w by M .

When applying Theorem 1 to AEXPSPACE problems,
we have that f(k) is a polynomial function, so the
AEXPSPACE(=2EXPTIME)-hardness of GR(1) synthesis
under incomplete information follows.

	Introduction
	Related Work
	Structure of the Paper

	Preliminaries
	Estimators for Controller Synthesis
	Running Example: Car Following
	Computing the Estimators
	Estimator-based Generalized Reactivity(1) Synthesis
	State Space Reduction in Estimator-Based Synthesis
	Experiments on the Running Example
	Conclusion & Discussion
	References

