
Making the Right Cut in Model Checking
Data-Intensive Timed Systems

Rüdiger Ehlers, Michael Gerke, and Hans-Jörg Peter

Reactive Systems Group
Saarland University

66123 Saarbrücken, Germany
{ehlers | gerke | peter}@cs.uni-saarland.de

Abstract. The success of industrial-scale model checkers such as Up-
paal [3] or NuSMV [12] relies on the efficiency of their respective symbo-
lic state space representations. While difference bound matrices (DBMs)
are effective for representing sets of clock values, binary decision dia-
grams (BDDs) can efficiently represent huge discrete state sets. In this
paper, we introduce a simple general framework for combining both data
structures, enabling a joint symbolic representation of the timed state
sets in the reachability fixed point construction. In contrast to other
approaches, our technique is robust against intricate interdependencies
between clock constraints and the location information. Especially in
the analysis of models with only few clocks, large constants, and a huge
discrete state space (such as, e.g., data-intensive communication proto-
cols), our technique turns out to be highly effective. Additionally, our
framework allows to employ existing highly-optimized implementations
for DBMs and BDDs without modifications. Using a prototype imple-
mentation, we are able to verify a central correctness property of the
physical layer protocol of the FlexRay communication protocol [15] tak-
ing an unreliable physical layer into account.

1 Introduction

The verification of asynchronous protocols or globally asynchronous locally syn-
chronous (GALS) hardware is a challenging task as it often requires dealing with
intricate timing dependencies and huge state spaces at the same time. Manual
correctness proofs are relatively hard to perform as special timing cases can be
overlooked more easily than in the purely synchronous setting. Consequently,
working with automated correctness provers, in particular by performing model
checking, is the predominant approach carried out in this field. For keeping track
of the timing correctly, a rich theory of timed automata [1] has been developed,
which forms the theoretical foundation for model checking tools such as Uppaal
[3], Kronos [23], or RED [21].

State-of-the-art model checking approaches for timed systems can broadly be
classified into two categories: semi-symbolic approaches and fully symbolic ap-
proaches [19]. In semi-symbolic approaches, on the one hand, the discrete part of

the system under consideration is represented explicitly while clock valuations
are lumped together into clock zones. These techniques are well-suited for sys-
tems with a small discrete state space. Fully symbolic approaches, on the other
hand, represent both parts of the system in a symbolic way to lower the effect of
state space explosion. For settings with a predominant control structure (such
as, e.g., data-intensive communication protocols), this is broadly considered to
be the more promising way to go as the discrete state space is often too large to
be represented explicitly even with modern computers.

Fully symbolic timed model checking is a challenging problem that attracted
a lot of interest during the last decade [9,16,4,21,6,19,22]. Some approaches rely
on restricting the type of timing of the system in a way that it can be discretized
more efficiently [6] or approximating the precise clock values to discrete time
steps [9]. In both cases, reduced ordered binary decision diagrams (BDDs) [10,11]
have been used as the uniform data structure for both time and the discrete part
of the system. For such settings, it has been observed that the BDDs can blow-
up significantly due to interdependencies in the timing behavior of the system
[9], rendering this approach problematic.

Basically, this leaves us with two ways of solving this problem. The first
one builds on using a different symbolic data structure like and-inverter graphs
[17] or conjunctive normal form clause sets, thus avoiding this blow-up. Here,
canonicity of the representation is renounced, rendering the application of the
basic reachability fixed point algorithm difficult. The second way is based on
keeping the data structures for clock zones and discrete state sets separate. One
promising approach in this direction is to combine difference bound matrices
(DBMs) [13] and BDDs. So far, to the best of our knowledge, this combination
has only been used for approximating the set of reachable states [22].

In this paper, we recall the idea of decoupling the clock zone from the discrete
state set representation. We use sets of pairs of DBMs and BDDs to represent
reachable states in the classical fixed point computation. A timed state is con-
tained in a state set if the set contains a DBM/BDD pair such that the state’s
clock valuation satisfies the DBM and the discrete part satisfies the BDD. To
the best of our knowledge, this is the first application of this data structure with
the standard fixed point algorithm.

Especially in the verification of asynchronous communication protocols, where
the timing behavior is usually complicated but the number of distinct arising
clock zones is small, our approach turns out to be very efficient since we benefit
from the well-suitedness of DBMs for representing intricate timing constraints
without cluttering the BDDs with timing dependencies. As the new approach
allows the usage of the standard fixed point construction for finding the set of
reachable states, it is simpler than the aforementioned techniques. The drawback
of having some timed state potentially being present in more than one such pair
is easily compensated by the additional possibility to perform a mixed breadth-
first and depth-first search in this setting: by preferring discrete steps, we can
forward the progress in exploring the discrete state space of the system in one

2

clock zone to successor clock zones, leading to faster termination of the model
checking process.

As a proof of concept, we demonstrate the applicability of our technique by
verifying the physical layer protocol of the FlexRay communication protocol [15]
which follows the GALS paradigm: the setting can be described using only two
clocks, each modeling the local pulsing in the discrete circuits of the sender and
the receiver. Our approach is thus ideally suited for this interesting verification
task as it exploits the model’s restricted timing behavior, which enables the use
of BDDs to tackle the huge arising discrete state space.

In Sect. 2, we begin our presentation with some preliminary definitions. Sec-
tion 3 then describes the general approach, followed in Sect. 4 by an explanation
of how example traces certifying the satisfaction of a reachability property are
generated. Afterwards, we describe our FlexRay model which is then used for
an experimental evaluation of the approach in Sect. 5. Finally, Sect. 6 concludes
with an outlook on the possible evolution of this approach.

Related work. Developing fully symbolic timed state space representations
has been an active field of research in the last decade. Møller et al. introduced
difference decision diagrams (DDDs) [16], a BDD-like data structure in which
each diagram node is labeled with a difference constraint. Here, the Boolean
constraints, represented as special differences, are interleaved with the clock
constraints in the diagram structure. Unfortunately, there is no implementation
of their prototype model checker available. Based on DDDs, Behrmann et al.
proposed clock difference diagrams (CDDs) [4] featuring deterministic interval-
based branching at each node level. However, a combination of CDDs with BDDs
enabling a fully symbolic state space exploration was only briefly discussed but
has not been thoroughly investigated yet. As a further extension, Wang proposed
clock restriction diagrams (CRDs) [21] where the branching decision depends on
overlapping upper bounds and unrestricted constraints are omitted. Experiments
with the CRD-based model checker RED suggest that the approach works well
on standard timed automata benchmarks having many clocks and causing only
a moderate discrete blow-up. However, in our experiments, RED runs out of
memory on the FlexRay case study.

Based on closed timed automata, a restricted form of classical timed automata
where only nonstrict clock constraints are allowed, Beyer introduced an integer
semantics where clock values and location configurations can be represented
jointly in a single BDD [6]. Similarly, Bozga et al. approximated the precise
clock values to discrete time steps, also resulting in a pure discrete semantics
allowing a state space representation using a single BDD [9]. Besides the loss of
expressivity in the modeling of timed systems, in both approaches, it has been
observed that the BDDs can blow-up significantly due to interdependencies in
the timing behavior of the system.

Seshia and Bryant solved the TCTL model checking problem by representing
sets of states by difference logic formulas which are, in turn, represented as BDDs
using a binary encoding [19]. The clock differences that need to be tracked in
the fixed-point computation are encoded in so-called transitivity constraints,

3

which are added on-the-fly during the model checking process. Even though they
added some specialized optimizations for this case, the experimental results are
inconclusive.

The idea of combining DBMs and BDDs was independently developed by Ya-
mane and Nakamura [22] for implementing an abstraction technique proposed by
Dill and Wong-Toi [14]. Our approach, however, uses DBM/BDD combinations
for a fully symbolic state space representation in the precise computation of the
reachable states of a timed system.

Previous correctness proofs of the physical layer protocol of the FlexRay
communication protocol [15] were obtained in a deductive way. In this line of
research, a fully reliable physical layer without any bit flips is assumed [7]. Our
correctness proof, which is obtained via model checking, bases upon a more
realistic setting taking an unreliable physical layer into account.

2 Preliminaries

2.1 Timed Systems

Timed Automata. The components of a timed system are represented by
timed automata. A timed automaton [1] is a tuple A = (L, l0, I, Σ,∆,X), where
L is a finite set of (control) locations, l0 ∈ L is the initial location, I : L→ C(X)
maps each location to an invariant, Σ is a finite set of actions, ∆ ⊆ (L × Σ ×
C(X) × 2X × L) is a transition relation, X is a finite set of real valued clocks,
and C(X) is the set of clock constraints over X. A clock constraint ϕ ∈ C(X) is
of the form

ϕ = true | x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

where x is a clock in X and c is a constant in N0. We say that a timed automaton
is invariant-free if I(l) = true for all locations l ∈ L. A clock valuation t : X →
R≥0 assigns a nonnegative value to each clock and can also be represented by
a |X|-dimensional vector t ∈ R, where R = RX

≥0 denotes the set of all clock
valuations.

The states of a timed automaton are pairs (l, t) of locations and clock valu-
ations. Timed automata have two types of transitions: timed transitions, where
only time passes and the location remains unchanged, and discrete transitions.
In a timed transition, denoted by (l, t)

a−→ (l, t + a · 1), the same nonnegative
value a ∈ R≥0 is added to all clocks such that, for each 0 ≤ d ≤ a, t+ d satisfies

the location invariant I(l). A discrete transition, denoted by (l, t)
a−→ (l′, t′) for

some a ∈ Σ, is a transition δ = 〈l, a, ϕ, λ, l′〉 of ∆ such that t satisfies the clock
constraint ϕ of δ, and t′ = t[λ := 0] is obtained from t by setting the clocks in
λ to 0 and satisfies the location invariant I(l′).

We say that a finite sequence a1 . . . an ∈ (Σ ∪ R≥0)∗ of transitions is in the

language of A (a1 . . . an ∈ L(A)) if there is a path s0
a1−→ s1 . . . sn−1

an−−→ sn such
that for all 1 ≤ i ≤ n, the individual si = (li, ti) are states of the automaton, s0

4

is an initial state (that is, l0 is the initial location and t0 = 0 is the zero vector),

and si−1
ai−→ si are transitions of A. We write s0 −→∗ sn for the existence of a

finite sequence a1 . . . an ∈ (Σ∪R≥0)∗ of transitions with s0
a1−→ s1

a2−→ . . .
an−−→ sn,

and call a state s reachable iff there is an initial state s0 with s0 −→∗ s.
Composition. Timed automata can be composed to networks, in which the
automata run in parallel and synchronize on shared actions. For two timed au-
tomataA = (L1, l

1
0, I1, Σ1, ∆1, X1) andA′ = (L2, l

2
0, I2, Σ2, ∆2, X2) with disjoint

clock sets X1 ∩X2 = ∅, the parallel composition A1‖A2 is the timed automaton
(L1 × L2, (l

1
0, l

2
0), I, Σ1 ∪Σ2, ∆,X1 ∪X2), where I(l1, l2) = I1(l1) ∧ I2(l2) for all

l1 ∈ L1 and l2 ∈ L2, and ∆ is the smallest set that contains

– for a ∈ Σ1 ∩Σ2, 〈(l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l′1, l′2)〉 if 〈l1, a, ϕ1, λ1, l
′
1〉 ∈ ∆1

and 〈l2, a, ϕ2, λ2, l
′
2〉 ∈ ∆2,

– for a ∈ Σ1 \Σ2, 〈(l1, l2), a, ϕ1, λ1, (l
′
1, l2)〉 if 〈l1, a, ϕ1, λ1, l

′
1〉 ∈ ∆1, and

– for a ∈ Σ2 \Σ1, 〈(l1, l2), a, ϕ2, λ2, (l1, l
′
2)〉 if 〈l2, a, ϕ2, λ2, l

′
2〉 ∈ ∆2.

In the following, we only consider the global timed automaton that is ob-
tained from the composition of the system’s component automata. Note that
control-related concepts such as synchronization, parallel composition, or inte-
ger variables are just technicalities in the construction of the symbolic discrete
transition relation; they do not have to be considered in the actual model check-
ing procedure.

Finite Semantics. The decidability of the reachability problem of timed au-
tomata relies on the existence of the region equivalence relation [1] on R which
has a finite index.

For a timed automaton A = (L, l0, I, Σ,∆,X), we call the value of a clock
x ∈ X maximal if it is strictly greater than the highest constant cmax any clock
is compared to.1 We say that two clock valuations t1, t2 ∈ R are in the same
clock region, denoted t1 ∼R t2, if

– the set of clocks with maximal value is the same in t1 and in t2 (∀x ∈ X :
t1(x) > cmax ⇔ t2(x) > cmax), and

– t1 and t2 agree (1) on the integer parts of the clock values, (2) on the relative
order of the noninteger parts of the clock values, and (3) on the equality
of the noninteger parts of the clock values with 0. That is, for all clocks
x and y with nonmaximal value, it holds that (1) bt1(x)c = bt2(x)c, (2)
t̂1(x) ≤ t̂1(y) ⇔ t̂2(x) ≤ t̂2(y), and (3) t̂1(x) = 0 if, and only if, t̂2(x) = 0,
where t̂i(x) = ti(x)− bti(x)c for i ∈ {1, 2}.

We denote with [t]R = {t′ ∈ R | t ∼R t′} the clock region t belongs to. We say
that two states s1 = (l1, t1) and s2 = (l2, t2) of A are region-equivalent, denoted
by s1 ∼R s2, if their locations are the same (l1 = l2) and the clock valuations are
in the same clock region (t1 ∼R t2), and denote with [(l, t)]R = {(l, t′) ∈ L×R |
t ∼R t′} the equivalence class of region-equivalent states that (l, t) belongs to.

1 cmax is sometimes called the clock ceiling.

5

Regions are a suitable semantics for the abstraction of timed automata be-
cause they essentially preserve the language: if there is a discrete transition
s

a−→ s′ from a state s to a state s′ of a timed automaton, then there is, for all
states r with r ∼R s, a state r′ with r′ ∼R s′ such that r

a−→ r′ is a discrete
transition with the same label. For timed transitions, a slightly weaker property

holds: if there is a timed transition s
t−→ s′ from a state s to a state s′, then there

is, for all states r with r ∼R s, a state r′ with r′ ∼R s′ such that there is a timed

transition r
t′−→ r′ (but possibly with t′ 6= t).

The finite semantics of a timed automaton A = (L, l0, I, Σ,∆,X) is the
finite graph JAK = (S, s0, T) where

– the symbolic state set S = {[(l, t)]R | (l, t) ∈ L × R} of JAK is the set of
equivalence classes of region-equivalent states of A, with

– the initial state s0 = [(l0, t0)]R, and

– the set T = {(s, s′) ∈ S × S | ∃r ∈ s, r′ ∈ s′, a ∈ Σ ∪ R≥0. r
a−→ r′} of

transitions.

The finite semantics is reachability-preserving:

Lemma 1. [1] For a timed automaton A = (L, l0, I, Σ,∆,X) there is a finite
path from a state (l, t) to a state (l′, t′) if, and only if, there is a finite path from[
(l, t)

]
R

to
[
(l′, t′)

]
R

in JAK.

Clock Zones. A coarser finite representation of R can be obtained by con-
sidering clock zones. A clock zone z is represented by a conjunction of clock
difference constraints of the form x − y ≺x,y cx,y, where x, y ∈ X ∪ {x0}, for
an x0 /∈ X, ≺x,y∈ {≤, <}, and cx,y ∈ Z ∪ {∞}. A clock valuation t satisfies z,
written as t ∈ z, if t′ = t ∪ {x0 7→ 0} satisfies each constraint x − y ≺x,y cx,y
from z: t′(x)− t′(y) ≺x,y cx,y. We define Z as the set of all clock zones.

A data structure for representing clock zones are difference bound matrices
(DBMs) [13], which allow, for two clock zones z, z′ ∈ Z, an efficient implemen-
tation of the operations (1) intersection z ∧ z′, (2) clock reset z[λ := 0], and
(3) elapsing of time z⇑ (see [5] for an overview). Note that, in order to ensure
termination of the forward analysis, we implicitly apply a maximal constant ex-
trapolation after executing a time elapse. We denote z0 as the clock zone that
only comprises the initial clock valuation 0.

2.2 Binary Decision Diagrams

For representing sets of locations symbolically we use reduced ordered binary
decision diagrams (BDDs) [10,11], which represent functions f : 2V → B for
some finite set of variables V . Since they are well-established in the context
of formal verification, we do not describe their details here but rather treat
them on an abstract level and only state the important operations (see [11]
for an overview). Given two BDDs (or more generally, two binary functions,
abbreviated as BF) f and f ′, we define their conjunction and disjunction as

6

Algorithm 1 Least fixed point construction for computing the set of reachable
states R.
R0 := {initial states}
i := 0
repeat
i := i+ 1
Ri := Ri−1 ∪ post(Ri−1)

until Ri = Ri−1

R := Ri

(f ∧ f ′)(x) = f(x) ∧ f ′(x) and (f ∨ f ′)(x) = f(x) ∨ f ′(x) for all x ⊆ V . The
negation of a BF is defined similarly. Given some set of variables V ′ ⊆ V and a
BF f , we define ∃V ′.f as the function that maps all x ⊆ V to true for which
there exists some x′ ⊆ V ′ such that f(x′ ∪ (x \ V ′)) = true.

2.3 Reachability Model Checking

Model checking reachability properties is carried out by computing the set of
reachable states and testing whether some goal state is contained in this set.
In this paper, w.l.o.g., we only consider properties of the form ∃♦φ, that is, “is
there an execution of the system such that φ is eventually reached”, where φ
is a Boolean state predicate defining the goal states. The classical fixed point
construction for this task is given in Algorithm 1. It relies on the existence of
an efficiently computable post operator for computing all successor states of a
given set of states.

When using BDDs for storing state sets in this algorithm, usually it is bene-
ficial to pre-compute a Boolean encoding of the transition relation of the system
for usage in the post operator. It contains precisely the pairs of states (s, s′) for
which there exists a transition from s to s′. For a comprehensive overview of
building such a relation and using it in the post operator, see [2].

3 Fully Symbolic Real-Time Model Checking

In this section, we present the basic building blocks of our approach, namely
the timed state set representation that is used and how the basic fixed point
algorithm for computing the set of reachable states can be extended in order
to be applicable to this representation. For a clear separation of concerns, we
describe our representation in a general way and abstract from the actual choices
of data structures for representing clock zones (CZ) and discrete location sets
(LS). While for our actual implementation of the approach (as described in
Sect. 5), DBMs and BDDs are used, the general idea is applicable to all suitable
data structure types (such as, e.g., CDDs [4]). Thus, future alternatives for
storing clock zones and location sets can also be used with our approach.

We start with a presentation for invariant-free timed automata and demon-
strate the application of our algorithm on an example network. We then show

7

how to extend the idea to include support for invariants. The section closes with
some remarks on optimizations to the algorithm.

The starting point for our approach are sets of CZ/LS pairs which permit
representing the timed and discrete parts of sets of states separately. That means,
sets of states S in the fixed point computations are defined as partial functions
S : Z ⇀ 2L. For such a so-called clock zone map (CZM), a state (l, t) is contained
in S if for some z ∈ Z, t ∈ z and l ∈ S(z). Note that we do not require the
choice of z to be unique.

3.1 Computing the Reachable States using CZMs

In the following, we describe how to adapt the basic fixed point construction for
computing the set of reachable states given in Algorithm 1 to work with CZMs.
The first step is to partition the overall transition relation of the system: for
each combination of clock guards and resets that occurs along some transition,
we build a separate transition relation containing all transitions corresponding
to the guard/reset pair. This step separates timing concerns from the discrete
transitions of the system and makes it easy to compute successor clock zones
from a given source clock zone and some guard/reset pair. Note that, when
using BDDs for representing location sets, it is not necessary to enumerate the
product locations in the global timed automaton explicitly if the system is given
as a network of timed automata, as the synchronization between the components
can be encoded symbolically.

After building the transition relations, the usual fixed point computation is
performed, with the small modification of iterating over all such guard/reset
pairs in every step. After each discrete transition, we also compute the set of
possible timed transitions that can follow in order to obtain the successor clock
zone. Algorithm 2 shows the details of these steps.

In each round, the algorithm iterates over the set of reachable states contained
in the respective previous pre-fixed point (stored in R). For every clock zone in
the domain of R, it computes successor locations L and clock zones z′ for each
guard/reset pair (ϕ, λ) in the transition relation. Then, we check if the new
CZ/LS pair (z′, L) is already contained in the pre-fixed point. If this is not the
case, it is added to the next pre-fixed point R′. For a more efficient computation,
we furthermore track changes in the CZM in a special waiting set W in order
to avoid re-considering CZ/LS pairs which have not changed since the previous
round of the algorithm. The computational burden of the added inner loop in
which all guard/reset pairs are iterated over is also weakened by the fact that
unlike for models checkers keeping the discrete part of the system explicit, this
setting allows the computation of timed successor zones for many locations at
the same time.

Since the algorithm presented is essentially equivalent to the classical reach-
ability fixed point algorithm, its correctness is guaranteed. Indeed, for every
n ∈ IN and timed state (l, t) that is reachable from the initial state in n discrete
steps, the set R contains this state after at most n iterations of computing the

8

Algorithm 2 Computing the set of reachable states R represented as a CZM.
The post operator is parametrized by the transition relation used.

1: for all guard/reset pairs (ϕ, λ) in the system do
2: compute the transition relation T [ϕ, λ]
3: end for
4: R :=

{
z⇑0 7→ {l0}

}
5: W := {z⇑0 }
6: R′ := R
7: repeat
8: R := R′

9: W ′ := ∅
10: for all z ∈W do
11: for all guard/reset pairs (ϕ, λ) do
12: L := postT [ϕ,λ](R[z])

13: z′ := (z ∧ ϕ)[λ := 0]⇑

14: if R′[z′] + L then
15: R′[z′] := R′[z′] ∪ L
16: W ′ := W ′ ∪ {z′}
17: end if
18: end for
19: end for
20: W := W ′

21: until R = R′

p q

a, y := 0

b

r

a, x ≥ 5

b, x := 0||

Fig. 1. An example network of timed automata

pre-fixed points. Note that the termination of this algorithm is also guaranteed
as clock regions are never split and the number of sets of these is finite.

3.2 An Example

Consider the parallel composition of the timed automata depicted in Figure 1.
The product automaton has two locations pr and qr, and two clocks x and
y. There are three guard/reset pairs (true, ∅), (x ≥ 5, {y}), and (true, {x}),
leading to three transition relations

– T [true, ∅] = {(qr, qr), (pr, pr)},
– T [x ≥ 5, {y}] = {(pr, qr)}, and

– T [true, {x}] = {(qr, pr)}.

9

Algorithm 3 Replacement for lines 13–17 to the inner loop of Algorithm 2 to
allow handling invariants.

1: for all i ∈ I do
2: L′ := L ∩ C(i)

3: z′ :=
(
(z ∧ ϕ)[λ := 0] ∧ i

)⇑ ∧ i
4: if R′[z′] + L′ then
5: R′[z′] := R′[z′] ∪ L′
6: W ′ := W ′ ∪ {z′}
7: end if
8: end for

When running the algorithm on this example, we initialize R = {(x = y =
0)⇑ 7→ {pr}} = {(x = y) 7→ {pr}} and W = {(x = y)}. Then, in the fixed point
computation, we iterate over the transition relations and obtain R = {{(x =
y) 7→ {pr}, (x ≥ 5 ∧ y ≤ x − 5) 7→ {qr}} and W = {(x ≥ 5 ∧ y ≤ x − 5)}. In
the second round, we add (x ≤ y) 7→ {pr} to R and obtain W = {(x ≤ y)}.
The algorithm then terminates in the following round, leaving us with R ={
{(x = y) 7→ {pr}, (x ≥ 5 ∧ y ≤ x − 5) 7→ {qr}, (x ≤ y) 7→ {pr}

}
as the CZM

representation of the set of reachable states in the system.

3.3 Handling Invariants in CZMs

To incorporate invariants in our fixed point construction, it is necessary to infer
them from the location information. Here, we exploit the fact that in our models,
the number of clocks and the number of distinct invariants is small. Hence, it is
feasible to enumerate all possible invariants of the product timed automaton as
a precomputational step.

Let I be the set of all invariants appearing in the product automaton of
a timed system. We assume that each invariant is given in minimal form. For
example, if precisely the invariants x ≤ 3, x ≤ 4, and y ≤ 2 are associated to
some (but not all) locations of three different components of the input network,
we obtain I = {true, x ≤ 3, x ≤ 4, y ≤ 2, x ≤ 3 ∧ y ≤ 2, x ≤ 4 ∧ y ≤ 2}.
Furthermore, we also introduce a function C : I → 2L that maps each invariant
onto the set of locations in which precisely the given invariant must hold. Note
that one can easily compute I and C in a preprocessing step without constructing
the product automaton.

Now, in our fixed point construction, we need to split the computed succes-
sor locations according to the mapped locations in C and compute the successor
clock zones taking into account the respective invariants. Algorithm 3 contains
the necessary changes to Algorithm 2. If the initial location has an active in-
variant, it also needs to be taken into account when computing the initial zone.
Hence, we also change line 4 of Algorithm 2 to R :=

{
z⇑0 ∧ I(l0) 7→ {l0}

}
and

line 5 to W := {z⇑0 ∧ I(l0)}.

10

3.4 Improving the Performance of the Approach

As an optimization of the presented technique, we propose to deviate from the
strict rule of computing one pre-fixed point after the other. By storing all newly
encountered CZ/LS pairs (z, l) directly into the pre-fixed point R in the algo-
rithm instead of R′ (which is copied to R after all elements from the waiting
set have been processed), computation time is saved in the case that z is in the
waiting set W but not yet processed in the respective round of the fixed point
computation. This can easily be seen from that fact that in such a case, the con-
sideration of the newly reachable timed states in not delayed to the next round,
resulting in a lower number of steps in total until the fixed point is reached.

Note that this also allows us to use a waiting queue instead of a list. Then,
in line 10 of Algorithm 2, we pop zones (i.e., we remove every zone from W
that was picked). Additionally, we modify the waiting queue such that clock
zones are drawn from it prioritized by their first appearance in R. This way, the
exploration of new clock zones is delayed such that the progress in computing
the reachable discrete states for zones encountered earlier can be forwarded to
successor zones more efficiently.

4 Guided Counter-Example Generation

The algorithm depicted so far is only capable of computing the set of reachable
states. As checking if it contains some given goal state is trivial after it has been
computed, this suffices to make the approach presented suitable for a typical
verification task for timed systems: checking that no error state is reachable.

For cases in which some error state is reachable, however, obtaining a se-
quence of transitions from the initial state to some error state is desired as it
helps the designer of a timed system to improve the model. Therefore, most
modern model checking tools can generate such counter-examples. This is also
possible with the improved version (see Sect. 3.4) of our fixed point construction
as we explain in the following.

Suppose that our improved fixed point construction terminates early with
a set of forward reachable states R comprising some error states E. Then, we
execute a nonimproved fixed point construction to compute a sequence of pre-
fixed points F0, . . . , Fn, where each Fi is restricted to R and Ef = Fn ∩ E 6= ∅.
Note that for all 0 ≤ i ≤ n, the set Fi contains only states that are reachable
after exactly i steps.

Now, we can compute a counter-example using a backward nonimproved fixed
point construction producing a sequence of backward reachable sets of states
Bn, . . . , B0 with Bn = Ef . For each 0 < j ≤ n, we compute Bj−1 by picking
one particular semi-symbolic state (i.e., a zone and one concrete location) from
Bj , compute its predecessors, and restrict them to Fj−1. After each iteration j,
we pick some transition connecting a state in Bj−1 and Bj , and add it to the
counter-example. Note that the computation of the predecessors can be done
in a symbolic way using our technique (the adaption to the backward case is
straight-forward).

11

5 Experimental Results

5.1 Prototype Implementation

We implemented our approach in a prototype model checker using the Uppaal-
DBM library [5] for representing DBMs and the Cudd library [20] for repre-
senting BDDs. To allow a fair comparison with Uppaal [3] and RED [21], our
tool reads automata-based specifications as input. The first step in its execution
is to call the tool Nova from the SIS toolset [18] as a back-end for finding ef-
ficient assignments of control locations to BDD variable valuations. Then, the
guard/reset pairs of the given timed system are collected and, for each pair,
the BDD representing the symbolic transition relation over the discrete control
structure is computed (using the assignments obtained in the first step). In the
last step of the preparation phase, the possible invariant combinations are col-
lected and, for each combination, the BDD representing the associated locations
is computed.

The actual fixed point computation of the reachable states is implemented as
described in Sect. 3. For the state space representation, we use a hash map that
maps DBMs to BDDs. We do not provide a fixed BDD variable ordering a priori
or use any other insight into the model to optimize the BDD representation.
Instead, our implementation only relies on the automatic on-the-fly reordering
heuristics implemented in the Cudd library.

5.2 The FlexRay Communication Protocol

The emergence of drive-by-wire and the need for high bandwidths in the design
of automotive electronics calls for a communication protocol that is both fast
and highly reliable. The recently developed FlexRay protocol [15] represents
a state-of-the-art industrial X-by-wire communication protocol that is used in
many modern cars. Its purpose is to enable reliable communication between the
various electronic control units (ECUs) that are connected by a bus. In our case
study, we investigate the critical physical layer protocol of the FlexRay protocol,
where a message is transmitted during a so-called static segment from a sending
ECU to a receiving ECU. As a crucial correctness property, it is required that
there is no deviation of the message received from the message sent. In the
following, we explain the important details of [15] which are reflected in our
model.

Clocks. Since the receiving and sending ECU are running asynchronously, we
introduce two clocks to model the timing behavior. The length of a clock cycle
may deviate by at most 0.15 % from the standard rate.

Bit Stream Format. The actual payload of a transmission between two ECUs
has a maximal length of 262 bytes. It is embedded into a structured bit stream
that consists of (1) the initial transmission start sequence (TSS), (2) the frame
start sequence (FSS), (3) the individual bytes of the payload, each prepended
with a byte start sequence (BSS), and finally (4) the frame end sequence (FES).
Thus, the maximal bit stream length is 2638 bits.

12

CZM model checker Uppaal

Payload Correct Steps Zones Time Memory Time Memory

1 Yes 6566 1858 86 s 252 MB 23 s 88 MB
2 Yes 8606 2498 2 min 251 MB 69 s 205 MB
3 Yes 10423 3142 7 min 527 MB 2 min 325 MB
4 Yes 12143 3782 2 min 251 MB 3 min 436 MB
5 Yes 13863 4422 4 min 312 MB 4 min 563 MB
20 Yes 45029 14038 5 min 261 MB 18 min 2 GB
21 Yes 46750 14678 6 min 259 MB 18 min 2 GB
22 Yes 48470 15318 5 min 262 MB 19 min 2 GB
23 Yes 50190 15958 4 min 259 MB 20 min 3 GB
24 Yes 51991 16024 7 min 264 MB 22 min 3 GB
25 Yes 52629 16024 5 min 314 MB 22 min 3 GB
31 Yes 54309 16024 16 min 415 MB 29 min 4 GB
32 Yes 54589 16024 6 min 313 MB 31 min 4 GB
33 Yes 54869 16024 28 min 955 MB 31 min 4 GB
34 Yes 55149 16024 13 min 313 MB MEMOUT
60 Yes 66230 16024 18 min 520 MB MEMOUT
100 Yes 90230 16024 57 min 941 MB MEMOUT
150 Yes 120230 16024 30 min 406 MB MEMOUT
200 Yes 150230 16024 72 min 938 MB MEMOUT
262 Yes 187430 16024 28 min 413 MB MEMOUT

Table 1. Comparison of our prototype with Uppaal on the FlexRay physical
layer protocol case study. The first column shows the length of the payload
in bytes. The second column states the obtained verification result. The next
four columns show the number of symbolic steps (i.e., applications of the post
operator) until the reachability fixed point is reached, the number of distinct
clock zones encountered, the running time, and the memory consumption of our
prototype model checker. The last two columns show the running time and space
consumption of Uppaal. All benchmarks were executed on an AMD Opteron
processor with 2.6 GHz and 4 GB RAM.

Redundancy and Error Model. Each bit of the bit stream is fed to the bus
in 8 consecutive clock cycles. As a reasonable error model, we assume that in
any sequence of 5 consecutive bits on the bus, 1 bit might be flipped.

Voting. In order to compensate for the flipped bits, the receiver determines
the voted value over the last 5 received bits (i.e., high for 3 or more high bits,
low otherwise).

Strobing and Bit Clock Alignment. In order to compensate for the clock
drifts, the receiver uses a counter to strobe the 5th out of 8 voted values. The
received stream consists of the sequence of strobed values. The strobe counter is
realigned at the start of the TSS or during a BSS.

13

CZM model checker Uppaal RED

Benchmark Steps Zones Time Memory Time Memory Steps Time Mem

Fischer 5 3156 1496 1 s 108 MB 0 s 37 MB 5 0 s 21 MB
Fischer 6 42528 17426 32 s 156 MB 0 s 37 MB 5 1 s 45 MB
Fischer 7 612531 227522 17 min 302 MB 1 s 37 MB 5 1 s 66 MB
Fischer 8 TIMEOUT 3 s 38 MB 5 3 s 105 MB
Fischer 9 TIMEOUT 15 s 42 MB 5 8 s 174 MB

Table 2. Comparison of our prototype with Uppaal and RED on the (timing-
intensive) Fischer protocol benchmark.

5.3 Model Checking FlexRay

We modeled the physical layer protocol of the FlexRay protocol [15] as a network
of timed automata2 for usage with Uppaal3 [3], RED4 [21], and our prototype
model checker. As a safety property, we check the reachability of a dedicated
error location which the receiver enters upon an uncompensatable deviation of
the received from the sent bit stream. Table 1 shows the results of our evaluation.
Unfortunately, for every payload length, RED runs out of memory (e.g., for the
smallest instance it hits the 4 GB limit after 18 minutes).

The most striking observation is that our prototype overall needs much less
memory than Uppaal or RED, which allows us to verify the full payload length
of 262 bytes. In fact, while our model checker’s memory consumption always
stays below 1 GB, Uppaal’s memory and time consumption increases linearly
in the length of the payload, resulting in running out of memory with a payload
length of 34 bytes or more. It is also noteworthy that in most of the cases
our approach also outperforms Uppaal w.r.t. the running time. An oscillation
effect can be observed in the running times and space consumptions of our
implementation which is caused by the variable reordering and caching heuristics
of the Cudd library. This BDD-related phenomenon is also observable in other
contexts (see, e.g., [8]). Nevertheless, the number of symbolic exploration steps
increases linearly in the length of the payload and the set of encountered clock
zones reaches its fixed point at a payload length of 24.

5.4 Model Checking Fischer

In addition to the FlexRay case study from Sect. 5.3, we also considered the
Fischer mutual exclusion protocol, a standard benchmark from the timed model
checking domain with a small discrete state space and one clock per compo-
nent. Table 2 shows that the existing model checking techniques implemented
in Uppaal and RED perform better than our prototype on this benchmark.

2 The models are available at http://www.avacs.org/Benchmarks/Open/flexray.tgz
3 Version 4.0.11, running with aggressive space optimization – option -S2
4 Version 8.100511

14

http://www.avacs.org/Benchmarks/Open/flexray.tgz

This is however not surprising as the Fischer protocol does not fall into the
class of systems whose verification our approach aims at. We presented a spe-
cialized technique for timed systems with a large discrete state space but only a
few clocks, an important class of models that comprise, e.g., data-intensive asyn-
chronous communication protocols. The Fischer protocol model, on the other
hand, has a large number of clocks (one per component), but only few locations,
thus the standard semi-symbolic state space representation used in Uppaal is
already quite effective here. Also, RED’s symmetry reduction is beneficial for
this particular protocol.

6 Conclusion and Outlook

DBMs and BDDs impressively demonstrate their effectiveness in model checkers
such as Uppaal and NuSMV. However, since NuSMV can only handle pure
discrete models and Uppaal does not have a symbolic representation for the
discrete part of the state space, both tools fail in verifying timed systems with
large discrete control structures.

This paper presented a fully symbolic approach to timed model checking
that combines DBMs with BDDs. In contrast to other approaches, our technique
neither suffers from a loss of modeling precision (we remain in the classical timed
automata framework) nor leads to blow-ups in the BDDs (we avoid the encoding
of timing interdependencies in the BDDs).

Inspired by the encouraging experimental results, in future work, we plan to
extend the scope of our approach to arbitrary timed systems. A promising direc-
tion is to investigate efficient representations of sets of pairs of DBMs and BDDs.
So far, our prototype uses a simple hash map for assigning complete DBMs to
BDDs. However, for many problem instances, considering partial DBMs might be
more appropriate as it gives more flexibility in finding efficient representations.

Acknowledgment. This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2) (1994) 183–235

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In Bernardo, M.,

Corradini, F., eds.: SFM. Volume 3185 of Lecture Notes in Computer Science.,
Springer (2004) 200–236

4. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In Halbwachs, N., Peled, D., eds.:
CAV. Volume 1633 of Lecture Notes in Computer Science., Springer (1999) 341–353

5. Bengtsson, J.: Clocks, DBM, and States in Timed Systems. PhD thesis, Uppsala
University (2002)

15

6. Beyer, D.: Improvements in BDD-based reachability analysis of timed automata.
In Oliveira, J.N., Zave, P., eds.: FME. Volume 2021 of Lecture Notes in Computer
Science., Springer (2001) 318–343

7. Beyer, S., Böhm, P., Gerke, M., Hillebrand, M.A., der Rieden, T.I., Knapp, S.,
Leinenbach, D., Paul, W.J.: Towards the formal verification of lower system layers
in automotive systems. In: ICCD, IEEE Computer Society (2005) 317–326

8. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from psl. Electr. Notes Theor. Comput. Sci. 190(4)
(2007) 3–16

9. Bozga, M., Maler, O., Pnueli, A., Yovine, S.: Some progress in the symbolic veri-
fication of timed automata. In Grumberg, O., ed.: CAV. Volume 1254 of Lecture
Notes in Computer Science., Springer (1997) 179–190

10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

11. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 1020 states and beyond. Inf. Comput. 98(2) (1992) 142–170

12. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model checker. STTT 2(4) (2000) 410–425

13. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In Sifakis, J., ed.: Automatic Verification Methods for Finite State Systems. Volume
407 of Lecture Notes in Computer Science., Springer (1989) 197–212

14. Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and
under approximation. In Wolper, P., ed.: CAV. Volume 939 of Lecture Notes in
Computer Science., Springer (1995) 409–422

15. FlexRay Consortium: FlexRay Communications System Protocol Specification
Version 2.1 Revision A. (2005)

16. Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Fully symbolic model
checking of timed systems using difference decision diagrams. Electr. Notes Theor.
Comput. Sci. 23(2) (1999)

17. Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking based on
AIGs, BDD sweeping, and quantifier scheduling. In: FMCAD, IEEE Computer
Society (2006) 89–96

18. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj,
H., Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS: A system for
sequential circuit synthesis. Technical Report UCB/ERL M92/41, EECS Depart-
ment, University of California, Berkeley (1992)

19. Seshia, S.A., Bryant, R.E.: Unbounded, fully symbolic model checking of timed
automata using boolean methods. In Jr., W.A.H., Somenzi, F., eds.: CAV. Volume
2725 of Lecture Notes in Computer Science., Springer (2003) 154–166

20. Somenzi, F.: CUDD: CU Decision Diagram package release 2.4.2 (2009)
21. Wang, F.: Efficient verification of timed automata with BDD-like data structures.

STTT 6(1) (2004) 77–97
22. Yamane, S., Nakamura, K.: Development and evaluation of symbolic model checker

based on approximation for real-time systems. Systems and Computers in Japan
35(10) (2004) 83–101

23. Yovine, S.: Kronos: A verification tool for real-time systems. STTT 1(1-2) (1997)
123–133

16

