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Abstract. Interval Temporal Logic (ITL) is a powerful formalism to reason about
sequences of events that can occur simultaneously and in an overlapping fashion.
Despite its importance for various application domains, little tool support for au-
tomated ITL reasoning is available, possibly also owed to ITL’s undecidability.
We consider bounded satisfiability which approximates finite satisfiability and is
only NP-complete. We provide an encoding into SAT that is designed to use the
power of modern incremental SAT solvers. We present a tool that tests an ITL
specification for finite satisfiability.

1 Introduction

Propositional Interval Temporal Logic (ITL) [13, 9] is a modal logic that is interpreted
over interval structures which enrich the natural numbers with propositional evaluations
of all its intervals. Its modalities are obtained from Allen’s relations on intervals [1].
Thus, it can make assertions like “every right-neighbouring interval contains an interval
which . . . ” etc.

Despite many claims about the importance of ITL in various areas like hardware
verification, A.I. planning etc., there is little tool support for automatically checking
the satisfiability of an ITL formula. On one hand this may be caused by ITL’s unde-
cidability. This issue has been studied extensively together with questions regarding
the expressive power and axiomatisability of ITL and its fragments, naturally obtained
by restricting it to a subset of Allen’s interval relations [10, 12, 11]. The complexity
of their satisfiability problems varies between NP and undecidability depending on the
combination of relations chosen.

There is an implementation of a tableau-based procedure [5] for the Right Neigh-
bourhood fragment only. This is quite a weak fragment featuring a single modality only.
The same fragment has also been targeted with an approach based on evolutionary al-
gorithms [4]. This constitutes a sound but incomplete approximation method for the
finite satisfiability problem, i.e. the question of whether or not a formula is satisfied by
an interval structure based on a finite prefix of the natural numbers.

Approximative solutions can help to tackle difficult (like undecidable or just very
hard) problems. One such method that is particularly successful in the area of hard-
ware verification is bounded model checking [7]. It approximates a PSPACE-hard model
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checking problem through successive calls to a problem in NP, i.e. one that easily re-
duces to the satisfiability problem for propositional logic (SAT). It has been shown that
such approximations can also yield useful approaches to even undecidable problems
[2].

Here we report on an implementation of a similar method for the finite satisfiability
problem for ITL. We show how to encode the problem of deciding whether or not a
given ITL formula ϕ has a model of length k by a propositional formula of size polyno-
mial in |ϕ| and |k|. The approximation then iterates through increasing lengths k, thus
being able to report satisfiability but not unsatisfiability. The encoding is incremental,
i.e. the SAT formula for length k+ 1 can be obtained using the SAT formula for length
k as starting point and does not have to be computed from scratch. This approach bears
the following advantages.

– It aims at efficiency by using modern SAT solvers and thus benefits from develop-
ments in this area.

– It covers the entire ITL unlike the few implementations described above.
– It is extensible; further logical operators like those of the Duration Calculus [6] or

CDT [15] could easily be integrated into the encoding.

2 Interval Temporal Logic

As usual, we write [i, j] when i ≤ j for the interval of natural numbers between i and j
inclusively. For an n ∈ N let I(n) = {[i, j] | 0 ≤ i ≤ j < n} be the set of all intervals
with upper bound less than n. Let P = {p, q, . . .} be a set of atomic propositions. A
(finite) interval structure (over P) is a pair I = (n, ϑ) with n ∈ N and ϑ : I(n)→ 2P .
We call n the length of the interval structure I.

There are twelve relations on intervals over a linear order, known as Allen’s relations
[1], which describe their relative position on this linear order. Here we consider four of
them defined by [i, j] B [i′, j′] iff i = i′ ∧ j′ < j (“started-by”); [i, j] E [i′, j′] iff
i < i′ ∧ j′ = j (“finished-by”); as well as their inverses B̄ and Ē where [i, j] r̄ [i′, j′]
iff [i′, j′] r [i, j].

Formulas of ITL in positive normal form over the set P of atomic propositions are
given by the following grammar.

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈r〉ϕ | [r]ϕ

where p ∈ P and r ∈ {B, B̄, E, Ē}.
We use usual Boolean abbreviations like ⊥ := p∧¬p and > := p∨¬p for some p.

Modal operators for the other eight Allen relations are definable via 〈A〉ϕ := ([E]⊥ ∧
〈B̄〉ϕ) ∨ 〈E〉([E]⊥ ∧ 〈B̄〉ϕ) (“meets”); 〈D〉ϕ := 〈B〉〈E〉ϕ (“contains”); 〈L〉ϕ :=
〈A〉〈E〉ϕ (“before”); 〈O〉ϕ := 〈E〉〈B̄〉ϕ (“overlaps”) and similarly for their inverses.

The set Sub(ϕ) of subformulas of ϕ is defined as usual. We measure the size of a
formula ϕ in terms of the number of its different subformulas: |ϕ| := |Sub(ϕ)|.



An ITL formula ϕ is interpreted in an interval [i, j] of a finite interval structure
I = (n, ϑ) as follows [9].

I, [i, j] |= p iff p ∈ ϑ([i, j])

I, [i, j] |= ¬p iff p 6∈ ϑ([i, j])

I, [i, j] |= ϕ ∧ ψ iff I, [i, j] |= ϕ and I, [i, j] |= ψ

I, [i, j] |= ϕ ∨ ψ iff I, [i, j] |= ϕ or I, [i, j] |= ψ

I, [i, j] |= 〈r〉ϕ iff there is [i′, j′] ∈ I(n) s.t. [i, j]r[i′, j′] and I, [i′, j′] |= ϕ

I, [i, j] |= [r]ϕ iff for all [i′, j′] ∈ I(n) with [i, j]r[i′, j′] we have I, [i′, j′] |= ϕ

The finite satisfiability problem for ITL is defined as follows. Given an ITL formula
ϕ, decide whether or not there is a finite interval structure I = (n, ϑ) and an interval
[i, j] ∈ I(n) such that I, [i, j] |= ϕ. A formula that has a model in the above sense is
said to be finitely satisfiable.

3 Approximating Finite Satisfiability

We develop the notion of bounded ITL satisfiability which approximates finite satisfia-
bility. To keep the presentation short we work with the minimal set of modal operators
introduced above. For efficiency purposes it may be useful to treat the other operators
as basic and not as abbreviations; this is done for instance in the implementation that is
reported on in the next section.

Definition 1. Let n ≥ 1. An ITL formula ϕ is said to be n-bounded satisfiable if there
is a finite interval structure I = (n, ϑ) such that I, [0, 0] |= ϕ. The n-bounded satis-
fiability problem is to decide, given an ITL formula ϕ, whether or not it is n-bounded
satisfiable.

First note that ϕ is finitely satisfiable iff there is a finite interval structure I such that
I, [0, 0] |= Somewhere(ϕ) with Somewhere(ϕ) := ϕ ∨ 〈B̄〉(ϕ ∨ 〈E〉ϕ). Thus, when
determining finite satisfiability it is possible to restrict the attention to satisfaction in the
interval [0, 0] at the cost of extending the input formula by 4 additional subformulas.
Then we get that ϕ is finitely satisfiable iff Somewhere(ϕ) is n-bounded satisfiable for
some n ≥ 1.

Note that n-bounded satisfiability is neither monotone nor antitone in n. Consider
ϕ2 := 〈B〉〈B〉>∧ [B][B][B]⊥. The first conjunct is satisfied in an interval of the form
[i, j] when j ≥ i + 2, the second one requires j ≤ i + 2. Thus, it is only satisfied by
intervals of length 2. Then 〈A〉(ϕ2∧ [B̄]⊥) is 3-bounded satisfiable but neither 2- nor 4-
bounded satisfiable. This is an important observation for the design of a procedure that
successively approximates finite satisfiability by bounded satisfiability for increasing
bounds. It means that one has to increase by steps of 1 for the procedure to be complete.

Let n ≥ 1 be fixed. We reduce the n-bounded ITL satisfiability problem to the
propositional satisfiability problem as follows. Given an ITL formula ϕ we construct a
finite set Cnϕ := {Xϕ

0,0} ∪ Pnϕ ∪ T nϕ of propositional formulas which is satisfiable iff
ϕ is n-bounded satisfiable. The elements of Pnϕ :=

⋃n−1
i=0

⋃n−1
j=i Pnϕ(i, j) are called the



main constraints, and those of T nϕ are called temporary constraints. This distinction is
necessary to make the encoding incremental, to be explained in detail below.
Cnϕ is defined over the set of atomic propositions {Xψ

i,j}0≤i≤j≤n,ψ∈Sub(ϕ). Intu-
itively, a variable Xψ

i,j expresses that ψ is satisfied by [i, j] in the interval structure of
length n that is represented by a model of Cnϕ .

Each main constraint in Pnϕ(i, j) is associated with a subformula of ϕ as follows.

¬p X¬pi,j → ¬X
p
i,j

ψ1 ∧ ψ2 Xψ1∧ψ2

i,j → Xψ1

i,j

Xψ1∧ψ2

i,j → Xψ2

i,j

ψ1 ∨ ψ2 Xψ1∨ψ2

i,j → Xψ1

i,j ∨X
ψ2

i,j

〈B〉ψ X
〈B〉ψ
i,j →

∨j−1
k=i X

ψ
i,k

〈B̄〉ψ X
〈B̄〉ψ
i,j → Xψ

i,j+1 ∨X
〈B̄〉ψ
i,j+1

〈E〉ψ X
〈E〉ψ
i,j →

∨j
k=i+1X

ψ
k,j

〈Ē〉ψ X
〈Ē〉ψ
i,j →

∨i−1
k=0X

ψ
k,j

[B]ψ X
[B]ψ
i,j → Xψ

i,k, k = i, . . . , j−1

[B̄]ψ X
[B̄]ψ
i,j → Xψ

i,k, k = j+1, . . . , n−1

[E]ψ X
[E]ψ
i,j → Xψ

k,j , k = i+1, . . . , j

[Ē]ψ X
[Ē]ψ
i,j → Xψ

k,j , k = 0, . . . , i−1

Each of them is defined by case distinction on the type of the corresponding subformula.
For every subformula of the form in the left column,Pnϕ(i, j) contains all the constraints
given in the corresponding right column.

The temporary constraints in T nϕ are defined to be {¬X〈B̄〉ψi,n | 0 ≤ i < n, 〈B̄〉ψ ∈
Sub(ϕ)}. Note that these variables describe the truth value of subformulas on intervals
that do not exist with the currently considered length of an interval structure. They are
used in the permanent constraints in order to make the encoding for the 〈B̄〉-operators
incremental. Since these intervals do not exist, these variables are forced to be false by
the temporary constraints. When increasing the length of considered interval structures,
the temporary constraints are deleted and more permanent constraints are being used to
describe the truth values of these new intervals of the form [i, n] for i ≤ n.

Theorem 2. For all ITL formulas ϕ and all n ≥ 1 we have that ϕ is n-bounded satis-
fiable iff Cnϕ is satisfiable.

The proof is standard and therefore omitted. The following estimation on the size
of Cnϕ is also easy to verify.

Lemma 3. Cnϕ contains O(|ϕ| · n2) many variables and is of size O(|ϕ| · n3).

Also note that Cnϕ consists of propositional clauses and can therefore be given to a
SAT solver as it is. Modern SAT solvers support incremental solving meaning that, as
long as in between runs of the solver only clauses are added, the next solving process
can re-use information gathered in the last one like learnt clauses etc. [8]. Solvers such
as picosat [3], which we use in the tool described here can do so even if some vari-
able values are assumed, and satisfiability checking is only performed for assignments
that respect these values. Note that all clauses in T nϕ are single-literal clauses and can
thus be used as variable value assumptions during solving.

In order to benefit from incremental SAT solving we need to explain how Cmϕ can be
obtained from Cnϕ for m > n adding minimal sets of clauses. Because of the remark on
non-monotonicity of bounded ITL satisfiability made at the beginning of this section
it makes sense to consider the case of m = n + 1 only. The next lemma stating the



possibility of using this encoding incrementally is also easily verified. It is straight-
forward to extend it to the case of m > n+ 1.

Lemma 4. For all n ≥ 1 we have Cn+1
ϕ = (Cnϕ \ T nϕ ) ∪

( n⋃
i=0

Pn+1
ϕ (i, n)

)
∪ T n+1

ϕ .

Thus, Cn+1
ϕ can be constructed from Cnϕ by removing the temporary constraints (of a

cardinality that is linear in n), and then adding a quadratic number of constraints to it.
This is asymptotically better than building Cn+1

ϕ from scratch which would take cubic
time in n.

Based on Theorem 2 and Lemma 4 we can devise a simple approximation scheme
that tests an ITL formula for finite satisfiability.

procedure ITLFINSATTEST(ϕ)
n← 0
C ← {Xϕ

0,0}
repeat

n← n+ 1
C ← C ∪

(⋃n−1
i=0 Pnϕ(i, n− 1)

)
until C is satisfiable assuming all assignment in T nϕ to hold
extract a model for ϕ of size n from a satisfying propositional assignment

end procedure
Completeness of this approximation is a direct consequence of the fact that it sym-
bolically tests all interval structures of increasing size for being a model for its input
formula. Soundness only holds in the weak sense that this method does not return any
false positives. However, it is not able to detect unsatisfiability, i.e. on unsatisfiable
inputs it simply does not terminate.

Theorem 5 (Completeness). ITLFINSATTEST(Somewhere(ϕ)) terminates on an n-
bounded satisfiable ϕ after at most n iterations of its loop and produces a model for
Somewhere(ϕ).

We remark that ITLFINSATTEST can be made to terminate on fragments of ITL for
which the small model property is known. Such fragments are necessarily decidable. In
such cases it suffices to run the loop up to the maximal size of a minimal model of the
input formula. If none has been found, unsatisfiability can be reported.

4 Experiments

To evaluate the scalability of incremental bounded ITL satisfiability checking using the
ideas described in this paper, we implemented the tool ITLFinSat. It is available for
download at https://github.com/progirep/ITLFinSat. The tool is writ-
ten in C++ and uses the SAT solver picosat v.957 [3] as a library for incremental
solving. The tool is completely single-threaded.

We consider three benchmark cases: an ITL model of the Fischer Mutex protocol
[14], a formalisation of a binary counter, and a classical puzzle as an ITL satisfiability
problem.



Table 1. Results of the experiments.

benchmark ϕ |ϕ| prop. formula size # prop. variables model size k time
Fischer, n = 2 414 45,441 31,482 10 0.18s
Fischer, n = 3 638 103,987 66,885 12 0.72s
Fischer, n = 4 880 201,650 121,800 14 6.2s
Fischer, n = 5 1140 352,529 201,501 16 311s
chicken puzzle 215 19,705 15,840 9 0.09s
5-bit counter 195 77,028 40,869 17 0.3s
6-bit counter 236 464,168 171,955 33 3.2s
7-bit counter 277 3,178,956 749,529 65 58.9s
8-bit counter 318 24,087,440 3,312,335 129 31m57s

Fischer protocol. This protocol orchestrates n agents that want to enter some critical
section. Mutual exclusion is achieved through a clever set-wait-and-test phase in which
each agent can indicate their intention to enter by setting a common variable to its
ID, then wait for a while and enter the critical section only if the variable’s value still
equals the agent’s ID. We formalise the possibility for more than one agent to enter their
critical section at the same time as an ITL satisfiability problem, using 4 propositions
for each agent to indicate the state that they are in currently, and n+ 1 propositions for
the common variable’s values. The ITL formula then expresses that at every time the
agents’ states and the variable’s value are unique, and that the agents can only change
states according to the description above, i.e. when the variable’s value allows them to
do so.

Intervals in a model for this formalisation can be seen as durations for how long the
agents need to remain in certain states, and the satisfiability check reveals that mutual
exclusion does not hold when the waiting phase is too short for some agents. Note that
correctness of Fischer’s protocol relies on some phases being longer than others, and
general interval length comparisons are not formalisable in plain ITL. Mutual exclusion
in this protocol does depend on certain intervals being longer than others, though; this
is why the reason for violation in this example would have to be found manually from
the output of the satisfiability test. For the Fischer protocol, we model the question if
for some value of n if for a setting with n processes, all of them can be in their critical
regions at the same time as an ITL formula.

The Chicken Crossing Puzzle. We formulate the classical problem of the farmer trying
to get a fox, a chicken and some corn across the river without ever leaving the chicken
with the fox or the corn unattended on one side. The existence of a solution can naturally
be formalised in ITL using propositions for the locations (i.e. side of the river) of the
four protagonists. The ITL formula states that none of them is on both sides at the same
time, that the farmer can only take one of them across the river at a time, that they are
all on the left side at the beginning and on the right side at the end, etc.

Binary counter. This benchmark family is used to test the limits of the SAT-based
approach. It formalises the evolution of an n-bit counter using propositions for “the i-th
bit is set/unset on this interval” by stating that the highest bit is unset and afterwards
set, and whenever bit i is set or unset on an interval then this begins with an interval in



which bit i− 1 is unset and ends in one in which bit i− 1 is set. Moreover, we require
that phases in which some bit is set resp. unset must not overlap. This formula for n bits
is always satisfiable, but its shortest models are of length 2n−1 + 1.

Table 1 presents data collected from satisfiability checks for these benchmarks. All
experiments were carried out on a computer with an Intel i5-3230M CPU running at
2.60GHz. A memory limit of 2GB was never exceeded in our experiments. The table
shows the size of the underlying ITL formula, the size and number of propositional
variables of its SAT encoding when it has been found to be k-bounded satisfiable, the
size k of the model that has been found, and the overall time taken for the satisfiability
check including the encoding and checks at model sizes less than k.
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4. D. Bresolin, F. Jiménez, G. Sánchez, and G. Sciavicco. Finite satisfiability of propositional

interval logic formulas with multi-objective evolutionary algorithms. In FOGA’13, pages
25–36. ACM, 2013.

5. D. Bresolin, D. Della Monica, A. Montanari, and G. Sciavicco. A tableau system for
right propositional neighborhood logic over finite linear orders: An implementation. In
TABLEAUX’13, volume 8123 of LNCS, pages 74–80. Springer, 2013.

6. Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information Process-
ing Letters, 40(5):269–276, 1991.

7. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1):7–34, 2001.
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