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Abstract— By performing synthesis from formal high-level
mission specifications, we can obtain robot controllers that
are guaranteed to operate correctly under the specified en-
vironment conditions. Such conditions must be stated in the
specification whenever there is no way in which the robot’s
task can be fulfilled without them holding, and they relate the
possible behaviors of the environment with the behavior of the
robot. Contemporary synthesis algorithms however frequently
construct implementations that try to trivially satisfy their
specifications by actively working towards the violation of the
assumptions, which is undesirable behavior.

To solve this problem, we consider the synthesis of cooperative
implementations of high-level robot controllers. In addition to
being correct, these have executions from every of their states
on which the environment satisfies its assumptions. Cooperative
implementations are particularly helpful in scenarios in which
the behavior of humans or other robots is modeled by envi-
ronment assumptions, as such implementations help them with
meeting their own objectives.

We show how the generalized reactivity(1) synthesis ap-
proach, which was shown to be valuable for robotics applica-
tions many times, can be adapted to yield such implementations,
and demonstrate the suitability of the resulting synthesis
algorithm on a complex delivery scenario. Our results show
that synthesizing cooperative implementations has the same
complexity as the standard reactive synthesis problem and is a
tractable problem in practice.

I. INTRODUCTION

A particularly ambitious approach to the construction of
robot controllers that execute reactive high-level mission
plans is to automatically synthesize them from formal spec-
ifications [1], [2], [3], [4]. Whenever a mission plan is
computed by the synthesis procedure, it is correct by con-
struction. This means that whenever the environment fulfills
the assumptions that are stated about it in the specification
and given the correct operation of the actuators and sensors,
executing the plan leads to the satisfaction of the system
guarantees that are stated in the specification.

While task planning is a classical topic in robotics, many
recent works consider reactive missions plans, which are
represented by finite-state machines and contain executions
for all possible environment behaviors. Thus, they are able to
react to changes in the environment without the need to re-
plan. The applicability of synthesis for reactive mission plans
has been demonstrated for a plethora of domains, such as the
coordination of multiple robots working on a single task [4],
and robots operating under piece-wise affine dynamics [5].

When synthesizing a reactive mission plan, the assump-
tions in a specification play an important role, as they define
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the conditions under which a robot has to perform its mission
[1], [2], [3], [4]. For example, if the workspace of a robot
contains doors, assumptions need to be made about when
doors are open. Without such assumptions, a specification
is only realizable if no behavior of the environment can
prevent the robot from fulfilling its mission. In addition to
liveness assumptions (such as “the door is always eventually
open”), safety assumptions are also frequently part of the
specification as they describe environment behavior that the
robot can assume not to occur (e.g., “the door never opens
when the robot is standing near the inside of the door”).

The assumptions and guarantees in the specification are
connected by an implication: the guarantees only have to
be met if the environment satisfies the assumptions that
we made about it. As the guarantees can typically only be
satisfied if the assumptions are, this is the right way of
connecting assumptions and guarantees. Unfortunately, con-
necting assumptions and guarantees by an implication leads
to the controller having an incentive to actively work against
the satisfaction of the assumptions. In our door example,
this could happen by the robot standing still indefinitely on
the inside of the door while it is closed: the door is then
not allowed to open anymore, while at the same time the
assumptions also state that it is open infinitely often. Since
the assumptions are not fulfilled in this case, this releases
the robot from the obligation to fulfill its mission. Obviously,
such robot behavior is of little use in practice. Yet, it fulfills
the requirement that the mission is carried out whenever the
environment assumptions hold.

Changing the assumptions to allow the door to stay closed
while the robot is standing on its inside would eliminate the
problem. However, adding exceptions to the specification for
all cases in which the robot can exploit the environment
would defeat the purpose of synthesis, as such cases can
be numerous and hard to find. Also, requiring the robot
to fulfill its mission regardless of whether the environment
assumptions hold is not feasible either, as the assumptions
have been made for a reason. In our example from above, if
the door connects two rooms which the robot needs to patrol
through, the assumption that the door between the rooms is
always eventually open is necessary for a mission plan to
exist.

The observation that automatically synthesized reactive
high-level mission plans can be uncooperative leads directly
to the question if there is some way to avoid changing the
specification and to synthesize a reactive mission plan that is
cooperative with its environment, i.e., performs its mission
if the environment satisfies its assumptions while refraining
from working towards the violation of the assumptions.



In this paper, we give a positive answer to this question.
We start with the generalized reactivity(1) synthesis algo-
rithm [3], which has been proven to be particularly well-
suited for robotics applications [1], [4], [5]. It is commonly
known under its abbreviated name GR(1) synthesis and is
attractive due to its comparably low singly-exponential time
complexity, which is in contrast to synthesis from richer
logics, such as full linear temporal logic (LTL), which
requires doubly-exponential time for synthesis [6]. It is easy
to show that controllers computed with this approach are not
necessarily cooperative by itself, and we give an example in
Section II.

We present a modification of the GR(1) synthesis approach
to produce cooperative reactive mission plans whenever
possible. These are not only correct in the traditional sense
(i.e., fulfill the specified guarantees if the assumptions are
satisfied), but at any point in time offer an execution that
leads to the satisfaction of both assumptions and guarantees.
Our modification does not increase the computational com-
plexity of synthesis: it stays singly-exponential in the number
of propositions used in the assumptions and the guarantees.

Our cooperative synthesis algorithm is a direct replace-
ment for the original GR(1) synthesis algorithm, which
makes it useful in contexts in which GR(1) synthesis has
previously been applied. Of particular interest are applica-
tions in which a robot and a human coordinate. Here, the
specifications contain assumptions about the behavior of the
human as well as system guarantees that the robot should
fulfill. Surely, the ultimate goal in the setting is to let both the
human and the robot meet their specified goals, which makes
our cooperative strategies especially useful in this context.

A. Related Work

Cooperative robot controllers that allow a group of robots
to perform its joint task in collaboration are a classical topic
in robotics (see, e.g., [7], [8]). The focus in this context lies
on computing a joint strategy for the robots, which they never
deviate from. Another research direction is the cooperation
with humans or other robots in a multi-agent setting. Here,
the agents and humans have their own individual goals and
coordinate on achieving them and/or some joint goal. Some
recent works in this area use formal methods in order to
derive correct-by-construction controllers [9].

When robot controllers must react to the environment,
soundness and completeness of controller generation can
be assured by performing reactive synthesis [3], [1]. In
this context, assumptions about the environment have to be
stated, and the controller can assume to work in an envi-
ronment that satisfies the imposed constraints. In previous
work, the complex interaction with the environment was
typically not considered, as the assumptions were typically
simple, such as “some door has to be open infinitely often”.
Thus, the cooperation of the system with the environment,
which can include humans or other robots, was not explicitly
considered.

A notable exception is the work on synthesizing robot
controllers that work under certain dynamics by DeCastro

et al. [10]. They compute specification revisions that require
the environment not to perform adversarial actions whenever
due to the robot dynamics, the robot cannot avoid to violate
its guarantees if the environment performs these actions. A
typical example is a robot with inertia that is moving towards
a door: if it is quite close to the door already, the environment
must not be allowed to close it at that point in order for the
mission specification to be fulfillable.

Reactive synthesis has also been applied in multi-robot
settings. In particular, Weng Wong and Kress-Gazit [11]
present an approach to let a group of robots coordinate their
individual tasks by exchanging information about their tasks.
They then use this information as assumptions about the
behavior of the other robots in order to find a controller
for their own objectives.

This work is part of a larger endeavor to synthesize
controllers that cooperate, are not lazy, and never give
up. All these problems are outlined in [12]. A procedure
for synthesizing cooperative implementations from general
linear temporal logic (LTL) specifications is given in [13].
In that work, we consider multiple reasonable levels of
cooperation between the environment and the system to be
constructed, and give a synthesis procedure with a doubly-
exponential time complexity that is suitable for all considered
levels of cooperation. The high computational complexity of
the general case makes the procedure from [13] unsuited
for robotics applications, which motivated the development
of a specialized procedure for GR(1) specifications and
the type of cooperation between the environment and the
system that we consider in this paper. In addition, the best-
effort quality guarantees that GR(1) synthesis offers (e.g.,
that the synthesized implementations contain no unnecessary
loops while moving towards the next goal) are retained
in the approach in this paper. Furthermore, our specialized
synthesis procedure for GR(1) specifications works without
the tree automata constructions of [13], which improves the
accessibility of the theory behind cooperative synthesis for
researchers from the robotics domain.

II. MOTIVATING EXAMPLE

Before we give the formal preliminaries and define the
problem of synthesizing a cooperative reactive mission plan,
let us motivate this problem using an example.

Consider the workspace depicted in Figure 1. We want
to synthesize a reactive mission plan (which is also called
a controller in the formal methods literature) for a robot
whose task is to patrol between the two green cells. It must
not collide with a moving obstacle, which may be a human
or another robot. Neither the moving obstacle nor the robot
may collide with walls, and they can move up, down, left,
or right in every step. Diagonal motion is permitted for both
the robot and the moving obstacle. The robot is not allowed
to move towards the obstacle if they are located adjacently,
and also the obstacle may not move towards the robot when
they are located adjacently. With these constraints, collisions
between the robot to be controlled and the moving obstacle
are not possible. As the robot and the obstacle can block each
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Fig. 1. An example workspace, where the robot to be controlled is not
shown. The arrows represent the vector field of discrete motion actions that a
robot with a non-cooperative high-level controller performs when the region
marked with a G is its current goal while the moving obstacle (which is
shown as a rounded rectangle) is standing still in the lower left corner.

other’s paths, we add the assumption on the environment
that the moving obstacle has to eventually move away if the
robot and the obstacle are located in adjacent cells for a long
period of time. Only with this assumption, the specification
built from the scenario becomes realizable (i.e., there exists
a controller) and we can synthesize a corresponding reactive
mission plan.

The resulting robot controller is not cooperative with the
environment. Figure 1 shows the possible trajectories of the
robot if the moving obstacle is in the lower left corner and
the robot’s current goal is the region marked by a G. It
can be seen that in some cases, instead of moving to this
goal, the robot actually works towards blocking the obstacle’s
motion. In particular, the robot makes this choice whenever
it is not already very close to the goal. Once the obstacle is
cornered, it cannot fulfill the liveness assumption to always
eventually move away any more. By the way in which the
assumptions and guarantees are connected in a specification,
this is allowed behavior despite the fact that the goal is never
reached. However, this behavior makes little sense.

A cooperative implementation would only be allowed to
corner the obstacle temporarily. Thus, it would eventually
allow the obstacle to leave the lower left corner.

III. PRELIMINARIES

a) Propositions, traces, and controllers: For all sets A
and B and all (x, y) ∈ 2A × 2B, we denote by (x, y)|C for
C ∈ {A,B} the mapping of (x, y) to x or y, respectively.
Given sets X and Y of input and output propositions, a
controller over X and Y is a finite-state machine M =
(S,X ,Y, δ, s0) with the set of controller states S, the partial
transition function δ : S × 2X ⇀ S × 2Y , and the initial
state s0 ∈ S. Executions of the controller are called traces
and defined as words w = w0w1w2 . . . ∈ (2X∪Y)ω such that
there exists a run π = π0π1 . . . ∈ Sω with π0 = s0 and
δ(πi, wi|X ) = (πi+1, wi|Y) for all i ∈ N. Traces can also
be finite. In this case, π is a finite string of length i+ 1 for
some i ∈ N, where δ(πi, wi|X ) is undefined while for all
j < i, δ(πj , wj |X ) is defined.

b) Specifications: Intuitively, specifications describe a
set T ⊆ (2X∪Y)ω of acceptable traces for a controller. We
use propositional logic augmented with the unary temporal
operators (“globally”), (“finally”), and (“next”) as a
concise representation of specifications. All these temporal
operators are borrowed from linear temporal logic (LTL)
[14]. A trace w = w0w1w2 . . . ∈ (2X∪Y)ω can satisfy a
temporal logic specification ϕ, written as w |= ϕ, or not. We
define that w |= p for some p ∈ X ∪ Y if p ∈ w0. Boolean
connectives have the usual semantics. The temporal operators
allow sub-formulas to observe the elements of the trace after
the first one. We write that w |= ϕ for some sub-formula
ϕ if w1w2w3 . . . |= ϕ. Likewise, we have that w |= ϕ if
there exists some i ∈ N such that wiwi+1wi+2 . . . |= ϕ,
and declare that w |= ϕ if for all i ∈ N, we have
wiwi+1wi+2 . . . |= ϕ.

All specifications considered in this paper belong to the
generalized reactivity(1) class, which is also abbreviated as
GR(1). Such specifications are of the form

(ϕa
i ∧ ϕa

s ∧ ϕa
l )→s (ϕ

g
i ∧ ϕ

g
s ∧ ϕ

g
l ).

All specification parts ϕa
i , ϕa

s , ϕa
l , ϕg

i , ϕg
s , and ϕg

l are
conjunctions of sub-formulas. The parts ϕa

i and ϕg
i are

the initialization assumptions and initialization guarantees.
These are only concerned with variables in X and Y ,
respectively, and free of temporal operators. The parts ϕa

s

and ϕg
s are the safety assumptions and safety guarantees,

in which the only temporal operator that may occur is ,
and it may not be nested. Finally, the parts ϕa

l and ϕg
l are

liveness assumptions and liveness guarantees. All conjuncts
in these parts are of the form ψ, where the only temporal
operator that can occur in ψ is , which may not be nested.
We also say that ψ is an environment goal if ψ is a
liveness assumption, or a system goal if ψ is a liveness
guarantee. The →s operator that separates the assumptions
and guarantees in a GR(1) specification represents strict
implication [3], which for the specification to be satisfied
requires that in addition to the guarantees holding if all
assumptions hold along a trace, no safety guarantee may be
violated before a safety assumption is violated.

c) GR(1) games: The synthesis problem for a set of
input propositions X , a set of output propositions Y , and a
specification ϕ is to decide whether there exists a controller
reading X and writing to Y all of whose traces satisfy ϕ.
A specification is said to be realizable if there exists such a
controller. Determining the existence of such a controller is
often performed by solving a game. Generalized reactivity
specifications in particular are translated to GR(1) games
[3]. Given proposition sets X and Y , these are defined
as tuples G = (V, E0, E1, v0, {ψa

1 , . . . , ψ
a
m}, {ψ

g
1 , . . . , ψ

g
n}),

where V = 2X × 2Y defines the set of positions in the
game, E0 ⊆ V × 2X defines the transition relation for the
environment player, and E1 ⊆ V × V defines the transition
relation for the system player. The elements of {ψa

1 , . . . , ψ
a
m}

and {ψg
1 , . . . , ψ

g
n} are the environment player’s and system

player’s goals, each of which are subsets of V × V . To
simplify the presentation in the following, we assume that



the GR(1) specification from which G is built has a single
(x, y) ∈ 2X × 2Y such that (x, y) |= ϕa

i ∧ϕ
g
i , as this allows

us to define that v0 represents the singleton initial position
of the game.

In the game, the two players interact by successively
constructing a play π = π0π1 . . . ∈ Vω ∪ V∗. Starting
from π0 = v0, the environment and system successively
select values xi ⊆ X and yi ⊆ Y , which together compose
πi = xi∪yi. The environment player is only allowed to select
values xi such that (πi−1, xi) ∈ E0 and the system player
may only select values yi such that (πi−1, (xi, yi)) ∈ E1. If
one of the players does not have a valid next move, it loses
the play, which is then finite. All other plays are infinite, and
winning for the system player if either
• for all ψg

j for (1 ≤ j ≤ n), we have that for infinitely
many i ∈ N, (πi, πi+1) ∈ ψg

j , or
• for some ψa

j for (1 ≤ j ≤ m), we have that only for
finitely many i ∈ N, (πi, πi+1) ∈ ψa

j .
We say that the system player wins the game if it has a
strategy to always choose the respective next move such
that any resulting play is winning. Such a strategy can be
represented by a finite-state machine M = (S,X ,Y, δ, s0),
which in turn is an implementation for the specification from
which the GR(1) game is built. We say that a play π is in a
deadlock if π is finite, and for πi being the last element of
π, there does not exists an x ∈ X such that (πi, x) ∈ E0.
Furthermore, we say that an infinite play π = π0π1 . . . is
in a livelock at position i ∈ N if for some environment or
system goal ψ, for all j > i, we have (πj , πj+1) /∈ ψ.

We will discuss in Section V how to solve a GR(1)
game (i.e., how to determine whether the system has a
winning strategy from v0). For the description of game
solving, we need to define a couple of operations over
position and transition sets in games. Let f : 2V → 2V

be a monotone function. We define µX.f(X) to represent
the value of evaluating f(f(f(. . . f(∅)))), i.e., iteratively
applying f starting from ∅ until a fixed point (the least
fixed point) of f is reached. Likewise, νX.f(X) represents
the value of evaluating f(f(f(. . . f(V)))), i.e., the greatest
fixed point of f . Fixed points can also be nested, so that,
e.g., for a function f : 2V × 2V → V , µY.νX.f(X,Y )
represents the least fixed point of function fY (X), where
for fixed Y , fY (X) is defined to be the greatest fixed point
of f(X,Y ) with respect to X . To reason about from which
positions in the game, the system player can enforce that
certain transitions are taken, we use the EnfPre : 2V×V → 2V

operator, defined as

EnfPre(T ) = {v ∈ V | ∀x ⊆ X :

(v, x) ∈ E0 → ∃y ⊆ Y :
(
v, (x, y)

)
∈ E1 ∩ T}

By its definition, the operator takes into consideration that
the environment and system players are only allowed to take
transitions in E0 and E1, respectively.

In the scope of the EnfPre operator, occurrences of some
position set X are interpreted as the set of transitions
originating from a position in X , whereas X ′ represents the

set of transitions leading to a position in X . So for example,
the formula µX.EnfPre(ψa

3 ∨X ∨X ′) defines the least fixed
point of positions X from which the system can enforce
that either the next transition originates from a position in
X , leads to a position in X , or satisfies environment goal
number 3. Note that in the formula, we used the ∨ operator
instead of ∪ even though ψa

3 , X , and X ′ are sets and not
boolean functions. We did so to remain consistent with the
existing literature, where it is customary to use ∨ and ∧
instead of ∪ and ∩ in the scope of µ and ν operators, using
the duality between functions of the type A → B and subsets
of A (for some set A).

d) GR(1) synthesis for robotics: Automatically synthe-
sized controllers are guaranteed to be able to respond to all
possible environment behaviors. Thus, they are well-suited to
be used in applications in which a robot must continuously
react correctly to the behavior of its environment. This is
especially beneficial in settings in which the workspace
is shared with humans or other robots, as it makes little
sense to plan a fixed trajectory in such a case. The state
changes of the humans and other robots would require per-
manent re-planning. The upfront computation of a correct-
by-construction controller is thus clearly more attractive.

In order to perform synthesis, the setting must be encoded
into the specification. We give the system a set of atomic
propositions for controlling the region of the workspace
in which the robot is and encode the possible transitions
between these regions into ϕg

s . Using a continuous motion
planner in parallel to the finite-state machine then allows us
to execute the controller on a physical robot [1].

In the example in Section II, we partitioned a two-
dimensional workspace into 15x8 regular squares and allow
the robot to move left, right, up, or down in the grid in
every step of its execution. The robot has dlog2(15)e +
dlog2(8)e = 7 propositions to encode its position, and so
does the environment for the location of the moving obstacle.
While the dynamics in the example are trivial, they allow
us to show the benefits of our approach without cluttering
the presentation with unnecessary details about the physical
domain. For this purpose, the model is well-established in
robotics (see, e.g., [15], [2]).

IV. PROBLEM STATEMENT

Let us now define the cooperative controller synthesis
problem.

Definition 1: Let X and Y be sets of propositions and
ϕ = (ϕa

i ∧ ϕa
s ∧ ϕa

l ) →s (ϕg
i ∧ ϕg

s ∧ ϕ
g
l ) be a general-

ized reactivity(1) specification. The cooperative controller
synthesis problem is to find a controller reading X , writing
to Y , all of whose executions satisfy ϕ, and for which for
all traces w = w0w1 . . . of the controller and all i ∈ N
(such that w is longer than i elements), there exists some
(other) infinite trace w′ = w′0w

′
1 . . . of the controller such

that w′ |= (ϕa
i ∧ ϕa

s ∧ ϕa
l ) and w0w1 . . . wi = w′0w

′
1 . . . w

′
i.

Informally, this definition requires the controller to only
have executions such that at any point in time, the environ-
ment has some way to enforce that the execution can be



completed to one that satisfies the assumptions. Since the
controllers that we consider are deterministic, the execution
can be enforced by the environment by simply choosing the
input of trace w′ in the future. As the controller is required
to fulfill the guarantees if the assumptions are satisfied,
fulfillment of the assumptions means that the guarantees are
also satisfied along this trace. We also say that a controller
can actively work against the satisfaction of the assumptions
if it is not cooperative. As we solve the cooperative controller
synthesis problem on the level of GR(1) games, we also use
the following problem formulation over strategies in games:

Definition 2: Let G = (V, E0, E1, v0, {ψa
1 , . . . , ψ

a
m},

{ψg
1 , . . . , ψ

g
n}) be a GR(1) game. We say that there exists

a cooperative strategy to win G from some position v ∈ V if
every prefix of a play induced by the strategy can be extended
to some play on which all environment and system goals are
reached on infinitely many transitions in the play.

Due to the fact that GR(1) games encode the synthesis
problem for GR(1) specifications, a cooperative strategy to
win G from v0 is precisely a solution to the problem from
Definition 1 for the specification from which G was built.

V. SYNTHESIZING COOPERATIVE IMPLEMENTATIONS

Given a generalized reactivity(1) game G = (V, E0, E1,
v0, {ψa

1 , . . . , ψ
a
m}, {ψ

g
1 , . . . , ψ

g
n}), the set of positions from

which player 1 (the system player or output player) wins (in
a not necessarily cooperative manner) can be determined by
evaluating the following fixed point formula:

W = νZ.
∧

j∈{1,...,n}

µY.
∨

i∈{1,...,m}

νX.

EnfPre
(
(Z ′ ∧ ψg

j ) ∨ Y
′ ∨ (¬ψa

i ∧X ′)
)

(1)

The set W can be thought of as being computed step-wise by
the fixed point operators. Recall that the winning condition
of the game is that the system wins if either some liveness as-
sumption is violated, or all liveness guarantees are met. The
outermost least fixed point νZ successively approximates the
set of winning positions from above by continuously filtering
out positions from which the environment has a strategy to
avoid a system goal transition to ever be taken while meeting
its liveness assumptions. The conjunction over the guarantee
indexes reflects the fact that no liveness guarantee must be
left out, so the set of winning positions needs to be winning
with respect to all of them. The least fixed point µY reflects
the aim of the system to get closer to the system goal; the
earlier a position is added to Y when evaluating µY.(. . .),
the closer it is to the system goal. The disjunction over the
liveness assumptions is rooted in the fact that the system
wins if any of the liveness assumptions is not satisfied. The
νX greatest fixed point then represents the search for waiting
positions in the game, i.e., a set of positions in which the
strategy can wait for the environment goal to be met. When
this goal is met, the strategy has to get closer to the goal
(or at least move to waiting positions that are closer to the
goal).

The EnfPre operator implements the game aspect – at
every step in the play, the system needs to be able to pick a
move such that the resulting transition in the game either

1) meets the goal ψg
j and leads to a position from which

the game is still winning for the system player,
2) gets the play closer to the current goal ψg

j , or
3) constitutes allowed waiting for some environment goal

ψa
i while staying in some “waiting zone” X .

These three cases are precisely the ones given as disjuncts to
the EnfPre operator. To obtain a strategy for a GR(1) game
(and hence, an implementation for the GR(1) specification
from which we built the GR(1) game), it suffices to always
pick transitions that are passed to EnfPre as early as possible
in the computation of W while the greatest fixed point
operators are fully evaluated. This ensures that transitions
that get the system closer to the system goal receive priority,
and thus prevents livelocks in the generated strategy. The
strategy cycles through the system goals in a round-robin
fashion and whenever its respective current goal has been
reached, it switches to the next goal.

Equation 1 differs from the one originally presented in
[3]. In particular, the equation is a lot simpler than the
older formulation by only having a single application of the
EnfPre operator in the formula and also not requiring multi-
variable fixed points. On a semantic level, both the simplified
and the original versions are the same, except that the one
presented in Equation 1 can be used for specifications in
which environment and/or system goals contain a “next” ( )
operator, which is useful in some cases [4]. The simplified
version is also the one on which the GR(1) synthesizer
slugs [16] is based.

Contribution: The reason why standard GR(1) synthesis
may compute uncooperative strategies is two-fold. First of
all, if in a position v ∈ V , there is no valid next move for
the environment player (according to the safety assumptions
ϕa
s ), then the position is automatically winning. Thus, it is

added to Y in the first round of evaluating the µY fixed point
of Equation 1, and hence may be found earlier than other
transitions that actually lead closer to the system goal. As a
result, the strategies found sometimes prefer the transition to
a deadlock position over other transitions.

The second reason is that during the computation of X ,
there is no distinction between the system being able to
enforce certain environment goals ψa

i to never be reached
or waiting for an environment goal that can actually be
reached (e.g., waiting for a door to open while the robot
is not blocking it). Despite the fact that the waiting positions
may have outgoing transitions that lead closer to the goal,
the strategy extraction algorithm has no priority to take them.

While we could modify strategy extraction to work in a
different manner to solve both problems, such a modification
is actually an unnecessarily difficult route to take; the idea to
pick transitions found early with priority is at the heart of the
correctness argument of the strategy extraction routine, and
thus is difficult to replace. The alternative that we propose in
this paper is to prevent that the undesired transitions are ever
computed in the evaluation of Equation 1. We do so in two



steps: (a) by eliminating deadlocks, and (b) by eliminating
livelocks.

For eliminating deadlocks, it suffices to prohibit the system
from making a choice of next move that leads to a position
in which the environment has to violate its assumptions to
make its own next move. We can do so by modifying the set
of system player transitions in G to:

Ẽ1 = E1 ∩ {(v, v′) ∈ V2 | ∃x ⊆ X .(v′, x) ∈ E0} (2)

This modification rules out precisely the unwanted transi-
tions and is essentially the same as the operation used by
DeCastro et al. [10] to generate revisions to an unrealizable
specification. For cooperative synthesis, we however do not
base the modification on a counter-strategy, but rather on the
moves that the system player could make.

Eliminating livelocks is more intricate. The strategy that
we compute should, for every of its states, always allow
the environment to satisfy its liveness assumptions on a
run that starts in the state. However, in Equation 1, the
computation only looks at one liveness assumption at a time
and derives a state set X from which the system can ensure
that either (1) if X is left, then a system goal has been
reached or the play comes closer to the system goal, or
(2) the play stays in X and the environment goal is not
reached. There is no restriction that a transition out of the
waiting phase in X has to exist, which allows the system
to prevent the environment from reaching its goal. We thus
modify Equation 1 as follows:

W̃ = νZ.
∧

j∈{1,...,n}

µY.
∨

i∈{1,...,m}

νX. (3)

EnfPre
(
(Z ′ ∧ ψg

j ) ∨ Y
′ ∨ (¬ψa

i ∧X ′)
)

∧ µR.Reach
(
(ψg

j ∨ Y
′ ∨R′) ∧X

)
∧

∧
k∈{1,...,m}

µR.Reach
(
(ψa

k ∨R′) ∧ Z
)

In this equation, Reach is the one-player variant of EnfPre,
i.e., for some set of transitions T , Reach(T ) computes the set
of positions that have an outgoing transition in T . The first
two lines of Equation 3 are an exact copy of Equation 1. The
third line requires every position in X to have an outgoing
sequence of transitions that ends with a transition that is a
system goal or leads closer to the system goal. Essentially,
adding this part to the formula removes all positions from
X that are only in X because the system has a strategy to
prevent progress towards reaching the environment goal. The
new conjunct in the third line of Equation 3 alone does not
allow the environment to reach its goals, however – if, for
example, some liveness assumption is not needed to fulfill
the mission, then the system may still choose its actions in
a way that prevents this assumption from being satisfied.
To mitigate this problem, the fourth line has been added to
Equation 3: it requires that from all winning positions of the
game, for all environment goals, there is always a path to
the goal without leaving the winning positions.

During the computation of the strategy in the game, we
have to make sure that the transitions found during the

ψ1
g∃i:ψi

a ψn
g... ∃i:ψi

a

ψm
a ψ1

a...

Fig. 2. Illustration of the cooperative strategy construction. Besides cycling
through the system goals ψg

1 . . . ψ
g
n, we also cycle through the environment

goals ψa
1 . . . ψ

a
m. The dashed arrows indicate that the environment goals are

skipped if the system is forced to take a transition that does not bring the
play closer to the next ψa

j . Still, there always exists a path through all ψa
j .

evaluation of the Reach(. . .) subformulas are actually taken.
The strategy extraction approach to always pick a system’s
choice that is found as early as possible during the compu-
tation of W (while the greatest fixed points are completely
evaluated) from standard GR(1) synthesis is compatible with
our addition of the subformula µR.Reach((ψg

j ∨Y ′∨R′)∧X)

in Equation 3. Since transitions within W̃ that are found to
be in (ψg

j ∨ Y ′ ∨R′)∧X earlier during the evaluation of R
are preferred, this guarantees that the path out of the waiting
phase in X that we search for in the third line of Equation 3
is actually contained in the extracted strategy. Even more,
from every position in X that is not already in Y (i.e, for
which the strategy part to reach the next system goal has not
yet been computed), the extracted strategy always contains
the shortest path to reach system goal ψg

j or a position in Y
that is closer to the next system goal.

In order to integrate the fourth line of Equation 3 into the
strategy extraction process, we treat it on the level of system
goals. While an ordinary generalized reactivity(1) strategy
cycles through all of the system goals during execution, our
modified strategies cycle through the system goals and the
environment goals. This is illustrated in Figure 2. For the
environment goals, the strategy always prefers transitions that
are contained in ((ψa

j ∨R′)∧Z) early during the evaluation
of the µR fixed point. The only difference to extracting a
strategy for a system goal is that once the system would be
forced to take a transition that does not bring the play closer
to ψa

j , the strategy just continues with cycling through the
environment and system goals, as the environment then had
its chance to reach its next goal.

As standard strategy extraction thus suffices, it remains to
be proven that W̃ characterizes the positions in the game
from which the system player has a cooperative strategy.

Theorem 1: Let G be a GR(1) game built from a gener-
alized reactivity(1) specification ϕ = (ϕa

i ∧ ϕa
s ∧ ϕa

l ) →s

(ϕg
i ∧ϕg

s ∧ϕ
g
l ). The positions characterized by W̃ computed

according to Equation 3 are precisely the ones from which
a cooperative strategy to win G exists.

Proof: For the first direction of the proof, it needs to
be shown that if some position v is included in W̃ , then
there exists a winning cooperative strategy from v. By the
first three lines of Equation 3, positions in W̃ are required
to be winning for the standard GR(1) winning condition.
Furthermore, from every position in a maximally evaluated



set X , the addition of the µR.Reach((ψg
j ∨ Y ′ ∨ R′) ∧ X)

conjunct ensures that leaving X or getting closer to a system
goal does not require the falsification of some liveness
assumption. Also, since Equation 3 is evaluated based on Ẽ1,
the system can achieve this without enforcing some safety
assumption violation. As leaving X implies that a play gets
closer to a liveness goal, which is eventually reached, we
know that from any position in W̃ , every system goal can
eventually be reached in a cooperative way if the assumptions
are fulfilled.

By the last line of Equation 3, we furthermore know
that from every position in W̃ , there exists a path to every
environment goal that does not leave W̃ . Both facts together
imply that if we apply the strategy extraction process de-
scribed above this theorem, we obtain a cooperative strategy
to win G from v.

For the converse direction, observe that the constraint
µR.Reach((ψg

j ∨ Y ′ ∨ R′) ∧ X) that was added to the
original GR(1) fixpoint equation in Equation 3 removes only
positions from X from which there is no path that eventually
takes a transition in ψg

j ∨ Y ′ without leaving X beforehand.
When Z is fully evaluated, this means that any strategy that
makes use of this behavior would be uncooperative (as it
never gets closer to the system goal – thus, such a strategy
has to rely on falsifying the liveness assumptions), so remov-
ing such states from X by the addition of µR.Reach((ψg

j ∨
Y ′ ∨ R′) ∧ X) does not rule out any cooperative behavior.
Likewise, the addition of µR.Reach((ψa

k ∨R′)∧Z) does not
rule out any cooperative behavior. The only case in which the
conjunction with µR.Reach((ψa

k ∨ R′) ∧ Z) removes some
positions is when all sequences of transitions within Z that
end with a transition in ψa

i lead to positions that are already
found to be losing for the system player. Again, cooperative
strategies cannot contain such transitions, so the addition of
this conjunct is justified.

Now assume that we have a cooperative strategy to win
G that visits a set of positions P ⊆ V in the game. By the
assumption that the strategy is correct, we have that P ⊆W
for the set of winning positions W computed by the fixpoint
formula from Equation 1. As in Equation 3, we only added
some conjuncts that we know not to rule out cooperative
behavior, we have that no position from P is removed by
these conjuncts, so we know that P ⊆ W̃ .

Note that the requirement for the synthesized implemen-
tation to be cooperative can sometimes be very restrictive.
In scenarios in which the environment cannot be prevented
from bringing itself into a deadlock situation, we cannot find
a cooperative implementation. To mitigate this problem to
some extent, we can compute two strategies: a cooperative
one (from any starting position that admits a cooperative
strategy) and a non-cooperative implementation (using stan-
dard GR(1) synthesis). Our generated overall strategy is then
an overlay of these: If the play at some point lands in
a position from which a cooperative implementation exists
(but none was available from the starting position), then the
resulting strategy switches to cooperative behavior. It should
be noted, however, that environment deadlocks indicate a

potential problem with the specification, and thus only few
reasonable specifications have them.

To conclude the discussion, we would like to mention
that Equation 3 can still be evaluated using binary decision
diagrams (BDDs, [17]), which are a data structure for the
symbolic manipulation of state (or position) sets. As the good
efficiency of GR(1) synthesis is due to the usage of this data
structure, this property of our modified synthesis algorithm
is crucial for its application in practice.

VI. EXPERIMENTS & EXAMPLE

We implemented our cooperative strategy computation
approach as a plug-in to the GR(1) synthesizer slugs [16].
The plug-in is included in the latest version of slugs
and uses BDDs as data structure for symbolic reasoning.
All computation times reported in the following have been
obtained on an Intel Core i5-4200U CPU running an x64
Linux at a peak speed of 2.3GHz. Overall, 4 GB of main
memory were available. The computed cooperative strategies
are not overlayed with non-cooperative ones.

Starting with a GR(1) encoding of the motivating exam-
ple from Section II, slugs needed 0.7 seconds to find
the specification to be realizable. Synthesizing a (BDD-
based) symbolic strategy took an additional 0.1 seconds. The
generated implementation is non-cooperative, as depicted in
Figure 1. Overall, 83.0 MB of memory were used. Checking
the existence of a cooperative implementation with the
new construction from Section V took 1.2 seconds, and
synthesizing the cooperative (symbolic) implementation took
an additional 0.1 seconds. The overall memory usage was
83.9 MB in this case.

As the example from Section II is comparably small, we
also considered a larger randomly generated workspace with
32x32 cells, depicted in Figure 3. The maze-like structure
of the workspace is challenging for GR(1) synthesis, as the
intermediate results computed by a GR(1) synthesizer also
contain the solution to the all-pairs shortest path problem in
the workspace. This time, neither the moving obstacle, nor
the robot can move diagonally. There is also a door (marked
by a D), which is assumed to always eventually be open. The
robot to be controlled cannot pass through the door while it
is not open. As the position space of the game consists of
(1) the position of the robot, (2) the position of the moving
obstacle, and (3) the state of the door, we have 221 positions
in the game overall (with 5 bits per x or y coordinate of the
robot or the obstacle each).

Despite this size, the standard GR(1) synthesis procedure
solved the non-cooperative synthesis problem in 24.5+3.2
seconds, the latter being the time for strategy computation.
The memory usage was 204.9 MB. Solving the coopera-
tive synthesis problem took 454.5+9.6 seconds and used
590.3 MB of memory. During the execution, 23276 iterations
of computing the inner-most µR fixed point were performed
overall, which shows that this example is actually quite
difficult to compute and explains the long computation times.

We did not perform experiments with an abstraction of the
physical workspace that is smarter than the grid-based one
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Fig. 3. A maze-like workspace, showing the initial positions of a robot
to be controlled (the dot) and a moving obstacle (rounded square). Doors,
system goals, and environment goals are marked with a D, a G, or an E,
respectively.

(as, e.g., the abstraction based on polyhedron-shaped regions
of interest performed in LTLMoP [18], [1]), but expect the
approach to scale there even better, as such abstractions
reduce the number of positions in the synthesis games.

VII. CONCLUSION

In this paper, we presented a reactive synthesis approach
for obtaining cooperative high-level robot controllers. These
allow the environment to start working towards the satisfac-
tion of its assumptions at any point during the execution of
the controller. Cooperative controllers are particularly helpful
in multi-robot scenarios or settings that involve humans
operating in the same space as robots, as they make sure that
the controller does not actively work against the satisfaction
of the assumptions. Our approach is a modification of
generalized reactivity(1) synthesis and we showed that while
the requirement for the controller to be cooperative makes
synthesis harder, the approach can still scale to quite large
scenarios. To keep the presentation simple, the robot dynam-
ics that we used in our examples is very simple. However,
our approach is suitable for all types of dynamics for which
GR(1) synthesis can be applied, and thus generalizes well to
more complex cases.
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APPENDIX

As a supplement to the main part of the paper, we
want to shortly discuss the drawbacks of alternatives to the
cooperative synthesis approach presented in the main part of
the paper. The two alternatives considered in the following
are:

1) Using an different parameter for strategy extraction
with the GR(1) synthesis tool of jtlv

2) Modifying the specification to disallow uncooperative
behavior by the system to be synthesized

JTLV: The jtlv framework for formal verification comes
with a generalized reactivity(1) synthesis tool that has a
couple of options for its implementation extraction part. In
particular, the user can give an arbitrary prioritization to the
the aims of the generated strategy to:

1) visit the current goal,
2) get closer to the current goal, and
3) take a transition that does not satisfy the current

environment liveness goal.
As there are six permutations of these aims, jtlv has
six possible settings. Using the prioritization 1-2-3 should
intuitively help with extracting a strategy that is cooperative.
However, this is not the case.

Consider the following GR(1) specification over X = {d}
and Y = {b0, b1}:(

d ∧ ((¬b0 ∧ ¬b1 ∧ ¬d)→ d)

∧ (¬b0 ∧ ¬b1 → ¬ d)
)

→s

(
(¬b0 ∧ ¬b1)
∧ ((¬b0 ∧ ¬b1)→ ¬ b1)

∧ ((b0 ∧ ¬b1)→ (¬ b0 ∨ ¬ b1))

∧ ((b0 ∧ b1)→ (¬ b1))

∧ (b0 ∧ b1)
)

The specification allows the system to enforce that the safety
assumptions are violated by choosing {b0 7→ false, b1 7→
false} two times in a row. Alternatively, the system
can choose the output sequence ({b0 7→ false, b1 7→
false}{b0 7→ true, b1 7→ false}{b0 7→ false, b1 7→
true}{b0 7→ true, b1 7→ true})ω , which allows the envi-
ronment to play ({d 7→ false})ω , satisfying the assumptions.

Starting from the position {d 7→ true, b0 7→ false, b1 7→
false}, jtlv computes an implementation that chooses
{b0 7→ false, b1 7→ false} twice, which is uncooperative
behavior. This implementation is computed for all possible
parameter settings for the strategy extraction routine of
jtlv.

By analyzing the scenario by hand, we can see why this is
the case. The synthesized implementation cannot wait for an
environment goal to be reached as there is only the implicit
true environment goal in the specification that is always
reached. Thus, at any step of its execution, it can only get
closer to the goal or reach the goal in the next step. When
moving closer to the goal, from every position p, the strategy

extraction routine takes outgoing transitions to positions p′

that were found earlier in the middle fixed point than p.
This is necessary for soundness of the strategy extraction
routine. From position p = {d 7→ true, b0 7→ false, b1 7→
false}, the number of steps needed to falsify the environment
assumptions is lower than the number of steps needed to
reach a system goal. Thus, p is found in the middle fixed
point before a transition from p towards the system goal
is found, and the only transitions that are available to the
strategy extraction routine in such a case are the ones that
work towards the violation of the assumptions. Thus, the
generated implementation is uncooperative.

While the specification in this example is quite trivial, it is
well-suited to show our main point, namely that cooperation
with the environment needs to be considered explicitly in the
synthesis approach.

Specification modification:
A straightforward alternative to cooperative synthesis is to

modify the specification to rule out uncooperative behavior.
In the main part of the paper, we argued that doing so
manually defeats the purpose of synthesis, as it would require
the user to enumerate situations in which the controller to be
synthesized could behave in an uncooperative way. After all
such situations have been identified, safety guarantees could
be added to the specification by the user to prevent unwanted
uncooperative behavior by the system.

There are however also specifications for which unco-
operative behavior cannot be ruled out by adding safety
guarantees. As an example, consider the following GR(1)
specification over X = ∅ and Y = {x0, x1}:

(x0 ∧ x1)
→s(¬x0 ∧ x1)

∧ (¬x0 ∧ ¬x1)
∧ ((¬x0 ∧ ¬x1)→ ¬ x1)

∧ ((x0 ∧ ¬x1)→ ¬ x0 ∨ ¬ x1)

∧ ((¬x0 ∧ x1)→ x0 ∨ x1)

∧ ((x0 ∧ x1)→ x1)

The specification essentially states that x0 and x1 together
implement a binary counter with range {0, 1, 2, 3} that the
system can increase or decrease by (at most) 1 in every step.
The proposition x0 represents the least significant bit of the
counter, while x1 is the most significant bit. The counter
starts with a value of 2. The system must set this counter
to 0 infinitely often, while we have an environment liveness
assumption that states that the value is 3 infinitely often.

An uncooperative system can simply always set the value
to 2 all of the time. When adding safety assumptions to rule
out this behavior, we have many options. One option is to
enforce that the value of the counter cannot stay at 2 during
a step of the system’s execution. This however still allows
the system to oscillate between counter values of 1 and 2,
which does not help. We now have a choice of either ruling
out a transition from counter value 1 to 2 or from 2 to 1 by



adding a corresponding safety guarantee. In the former case,
we would prevent the system from satisfying the liveness
assumption, whereas in the second case, we would prevent
it from satisfying the liveness guarantee. So both of the two
options are not suitable.

Now we could also try to add liveness guarantees to
force the system to give the environment some leeway for
satisfying its assumptions. However, adding a guarantee that
infinitely often, uncooperative transitions are not taken does
not help. Also, adding the liveness assumptions as liveness
guarantee does not help either, as that still allows the system
to wait for progress towards satisfying a liveness assumption,
which is undesired behavior.

In addition to the observation that cooperative behavior
cannot be easily enforced in this scenario by modifying the
specification, we can see that even in this very small example,
there can be multiple ways in which the system “may get
stuck” (at values 0, 1, and 2, or oscillating between 0 and 1
or 1 and 2). Thus, asking the user to modify the specification
to exclude all such cases can lead to a substantial blow-up

of the specification. But also the automatic adaptation of the
specification is difficult as our example shows that additional
system propositions may be needed.

Furthermore, automatic modification of the system spec-
ification has the problem that we need to encode into the
game that from every state of the controller to be synthesized,
there should always exist the possibility for the environment
to satisfy its assumptions. As this existence requirement is
incompatible with the winning condition of the game (which
states that for all environment behaviours, there should exist
a winning trace), we could only modify the specification
such that from every state in the controller, there exists a
fixed predetermined way to reach any environment goal.

The cooperative synthesis approach now computes pre-
cisely such paths. The only difference to modifying the
specification is that the resulting paths are not added to the
specification. As they may need to be changed whenever the
specification is changed, this is however no drawback, as the
obtained information cannot be reused after a specification
change anyway.


