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Abstract. Emptiness checking of ω-automata is a fundamental part of
the automata-theoretic toolbox and is frequently applied in many appli-
cations, most notably verification of reactive systems. In this particular
application, the capability to extract accepted words or alternatively ac-
cepting runs in case of non-emptiness is particularly useful, as these have
a diagnostic value. However, non-optimised such words or runs can be-
come huge, limiting their usability in practice, thus solutions with a small
representation should be preferred. In this paper, we review the known
results on obtaining these and complete the complexity landscape for all
commonly used automaton types. We also prove upper and lower bounds
on the approximation hardness of these problems.

1 Introduction

In the last decades, model checking has emerged as an increasingly successful
approach to the verification of complex systems [1, 2]. This development is wit-
nessed by the existence of a significant number of industrial-scale model checkers
and successful experiments on integrating the usage of model checkers into the
development cycle of industrial products [3–5]. Compared to deductive verifica-
tion approaches, model checking has the advantage of being a push-button tech-
nology: the designer of a system only has to state the desired properties and (a
model of) the system implementation, but the proof of correctness/incorrectness
of the system is done automatically. In case of an error in the implementation,
the model checker usually constructs an example run of the system in which
this error occurs, which in turn is useful for the system designer to correct the
system. It has been observed that this makes model checking particularly useful
in the early development stages of a complex system [4, 6], as the automatic
generation of such counter-examples saves valuable time.

Finding good counter-examples in model checking is however a non-trivial
task as the question which of the often infinitely many counter-examples is most
useful for the designer heavily depends on the particular problem instance [6, 7].
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Consequently, the length of a counter-example is the predominant quality metric
that researchers in this area have agreed on [8].

As an example, in the context of model checking finite state machines against
properties written in linear time temporal logic (LTL), the specification is usually
negated and transformed into an equivalent non-deterministic Büchi automaton.
Finding a witness for the non-satisfaction of the specification then amounts to
finding an accepting lasso in the product of the finite state machine and the
Büchi automaton. In this context, shorter lassos are preferred as they simplify
analysing the cause of the problem. Nowadays, efficient polynomial algorithms
for finding a shortest accepting lasso in such a setting exist [9, 7], allowing for
the extraction of such shortest lassos. On the other hand, for systems that obey
some fairness constraints, the problem of finding short counter-examples reduces
to finding short accepting lassos in generalized Büchi automata. For this case, it
is known that finding a shortest accepting lasso is NP-complete [10].

Independently of these complexity considerations, it has been argued that
for debugging models, a shortest accepting lasso is not what the designer of a
system is usually interested in [11]. In fact, some input to the system of the form
uvω (for u and v being finite sequences) such that |u| + |v| is minimal is likely
to be more helpful for debugging as such a representation is independent of the
actual automaton-encoding of the violated property. For this modified setting,
Kupferman and Sheinfeld-Faragy proved that also for ordinary model checking
without fairness, finding shortest such counter-examples (called witnesses in this
case) is NP-complete, rendering the problem difficult.

From a more high-level view of these results, the existence of efficient al-
gorithms for some of the cases just discussed on the one hand and the NP-
completeness of the other cases leads to a natural question: where exactly is the
borderline that separates the hard problems from the simple ones for finding
short counter-examples in model checking? Furthermore, from a practical point
of view, another question naturally arises: what is the approximation hardness
of these problems? For example, while finding a shortest witness for the non-
satisfaction of a specification might be NP-hard, finding a 2-approximate shortest
witness might be doable in polynomial time. Obviously, such a result would have
practical consequences. Nevertheless, to the best of our knowledge, this question
has not been discussed in the literature yet.

In this paper, we give a thorough discussion of the complexity of finding short
non-emptiness certificates for various types of ω-automata, which answers the
question how hard obtaining short counter-examples in regular model checking
(which reduces to Büchi automaton emptiness) and model checking under fair-
ness (which reduces to generalized Büchi automaton emptiness) actually is. We
discuss both types of certificates mentioned above: short accepting lassos and
short witnesses. As finding short lassos and witnesses is also useful in other con-
texts in which automata-theoretic methods are applied, like synthesis of closed
systems [12] or deciding the validity of formulas in logics such as S1S [13], we
give a unified overview for all commonly used types of ω-automata, namely those
with safety, Büchi, co-Büchi, parity, Rabin, Streett, generalized Büchi and Muller



acceptance conditions. For all of these cases, we review the known complexity
results for the exact minimization of the size of accepting lassos or witnesses and
complete the complexity landscape for the cases not considered in the literature
so far. This results in the first complete exposition of the borderline between the
hard and simple problems in this context. We also examine the approximation
hardness of the NP-complete problems of this landscape, which, from a prac-
tical point of view, is an important question to raise as approximate solutions
often suffice for the good usability of a method in which finding short accepting
lassos or witnesses is a sub-step. The results we obtain for the approximabil-
ity of the problems considered are mostly negative: For example, we prove that
approximating the minimal witness size within any polynomial is NP-complete
even for the simple safety acceptance condition. We also give some positive re-
sults, e.g., a simple algorithm for approximating the minimal witness size within
any (fixed) exponential function that runs in time polynomial in the number
of states of some given ω-automaton. Table 1 contains a summary of the other
results contained in this paper.

The structure of our presentation is as follows: In the next section, we state
the preliminaries. Sections 3 and 4 contain the precise definitions of the problems
of finding shortest accepting lassos and witnesses and present hardness results
and algorithms for them. Section 5 concludes the findings and sketches the open
problems.

2 Preliminaries

An ω-automaton A = (Q,Σ, q0, δ,F) is a five-tuple consisting of some finite
state set Q, some finite alphabet Σ, some initial state q0 ∈ Q, some transition
function δ : Q × Σ → 2Q and some acceptance component F (to be defined
later). We say that an automaton is deterministic if for every q ∈ Q and x ∈ Σ,
|δ(q, x)| ≤ 1.

Given an infinite word w = w1w2 . . . ∈ Σω and an ω-automaton A =
(Q,Σ, q0, δ,F), we say that some sequence π = π0π1 . . . is a run for w if π0 = q0
and for all i ∈ {1, 2, . . .}, πi ∈ δ(πi−1, wi). We say that π is accepting if for
inf(π) = {q ∈ Q | ∃∞j ∈ IN : πj = q}, inf(π) is accepted by F . The acceptance
of π by A is defined with respect to the type of F , for which many have been
proposed in the literature [14].

– For a safety winning condition, all infinite runs are accepting. In this case,
the F-symbol can also be omitted from the automaton definition.

– For a Büchi acceptance condition F ⊆ Q, π is accepting if inf(π) ∩ F 6= ∅.
– For a co-Büchi acceptance condition F ⊆ Q, π is accepting if inf(π)∩F = ∅.
– For a generalized Büchi acceptance condition F ⊆ 2Q, π is accepting if for

all F ∈ F , inf(π) ∩ F 6= ∅.
– For a Rabin acceptance condition F ⊆ 2Q × 2Q, π is accepting if for F =
{(F1, G1), . . . , (Fn, Gn)}, there exists some 1 ≤ i ≤ n such that inf(π) ⊆ Fi

and inf(π) ∩Gi 6= ∅.



– For a parity acceptance condition, F : Q→ IN and π is accepting in the case
that max{F(v) | v ∈ inf(π)} is even.

– For a Streett acceptance condition F ⊆ 2Q × 2Q, π is accepting if for F =
{(F1, G1), . . . , (Fn, Gn)} and for all 1 ≤ i ≤ n, we have inf(π) * Fi or
inf(π) ∩Gi = ∅.

– For a Muller acceptance condition F ⊆ 2Q, π is accepting if inf(π) ∈ F .

The language of A is defined as the set of words for which there exists a run that
is accepting with respect to the type of the acceptance condition. We also call
automata with a t-type acceptance condition t-automata (for t ∈ {safety, Büchi,
co-Büchi, generalized Büchi, parity, Rabin, Streett, Muller}). For all acceptance
condition types stated above, |F| is defined as the cardinality of F (for safety
automata we set |F| = 0).1 We define the size of A, written as |A| to be |Q| +
|Σ|+ |δ|+ |F| for |δ| = |{(q, q′, e) ∈ Q×Q×Σ | q′ ∈ δ(q, x)}|.

We say that an algorithm approximates the minimal lasso/witness within
some function f(n) if for every problem instance with a shortest accepting
lasso/witness having some size n ∈ IN, it always finds a solution of size not
more than f(n). An algorithm is said to approximate within a constant fac-
tor/within a polynomial if there exists some c ∈ IN/some polynomial function
p(n) such that it approximates within f(n) = c ·n/f(n) = p(n), respectively. For
the hardness and non-approximability results, we assume that P 6=NP (otherwise
all problems discussed here are solvable in polynomial time).

An automaton A = (Q,Σ, q0, δ,F) can also be thought of as a graph 〈V,E〉
with vertices V = Q and edges E ⊆ V ×V such that for all v1, v2 ∈ V , (v1, v2) ∈
E if there exists some a ∈ Σ such that v2 ∈ δ(v1, a). A path in 〈V,E〉 going
from v to v′ is a sequence π = v1 . . . vn with v1 = v and vn = v′ such that for
all i ∈ {1, . . . , n}, vi ∈ V and for all i ∈ {1, . . . , n− 1}, (vi, vi+1) ∈ E. A strongly
connected subset of A is a set of states Q′ ⊆ Q such that there exist paths in
〈Q′, E|Q′〉 between all pairs of states in Q′.

For all acceptance condition types given above, the emptiness of the language
of an automaton (i.e., whether there exists no accepted word) can be decided in
time polynomial in the size of the automaton. For Rabin and Muller automata,
this follows from standard automata constructions (see, e.g., the folk theorems in
[15]). For Streett automata, this follows from the existence of efficient emptiness
checking constructions [16]. Likewise, checking if a word uvω is accepted by some
automaton A can also be performed in time polynomial in |uv| and |A| for all
of these acceptance condition types.

3 Finding Shortest Accepting Lassos

In this section, we deal with finding shortest accepting lassos in ω-regular au-
tomata. Given an ω-automaton A = (Q,Σ, q0, δ,F), we formally define lassos as
pairs (l, l′) such that:
1 As in this paper, we are only interested in the borderline between NP-complete

problems and those that are in P (assuming P6=NP), we can safely ignore the fact
that an explicit encoding of F might actually be slightly bigger.



– l = l0 . . . ln ∈ Qn for some n ∈ IN0

– l′ = l′0 . . . l
′
n′ ∈ Qn′

for some n′ ∈ IN>0

– l0 = q0, ln = l′0 = l′n′

– For all i ∈ {0, . . . , n− 1}, ∃x ∈ Σ such that δ(li, x) = li+1

– For all i ∈ {0, . . . , n′ − 1}, ∃x ∈ Σ such that δ(l′i, x) = l′i+1

The length of such a lasso is defined to be n+ n′. Given a lasso (l, l′), we call l′

the lasso cycle of (l, l′).

3.1 The Rabin Acceptance Condition and its Special Cases

First of all, we consider safety, Büchi, co-Büchi, parity and Rabin acceptance
conditions and show that finding shortest accepting lassos for all of these ac-
ceptance condition types is doable in time (and thus, space) polynomial in the
input size. Note that conversions from safety, Büchi, co-Büchi or parity accep-
tance components to equivalent Rabin acceptance components can easily be done
with only polynomial blow-up (see, e.g., [17]).

For Büchi automata (and thus also safety automata as a special case), efficient
algorithms for finding shortest accepting lassos are known, requiring roughly
O(|Q||δ|) time (see [8, 9, 6] for entry points to the literature).

For the remaining cases, we show that finding shortest accepting lassos is
solvable in polynomial time for Rabin automata, leading to the same result also
for co-Büchi and parity automata. Without loss of generality, we can assume
that a Rabin automaton has only one acceptance pair, i.e., F = {(F,G)} for
some F,G ⊆ Q as a word is accepted by a Rabin automaton (Q,Σ, q0, δ,F)
if and only if there exists an acceptance pair (F,G) ∈ F such that A′ =
(Q,Σ, q0, δ, {(F,G)}) accepts the word. Therefore, by iterating over all elements
in F and taking the shortest lasso found, we can extend a polynomial algo-
rithm for a single acceptance pair to a polynomial algorithm for general Rabin
automata.

Note that for a lasso (l, l′) with l′ = l′0 . . . l
′
n′ to be accepting for (Q,Σ, q0, δ,

{(F,G)}), we must have {q ∈ Q | ∃i : l′i = q}\F = ∅. So, states in Q\F may not
occur on the cycle-part of the lasso. For each state q ∈ F , we can apply one of
the basic shortest-lasso algorithms for Büchi automata on (F,Σ, q, δ|F , G) and
compute a shortest accepting lasso in it. Let the lasso length for each starting
state q ∈ F be called c(q).

For actually obtaining a shortest accepting lasso over (Q,Σ, q0, δ, {(F,G)}),
we can apply a standard shortest-path algorithm by interpreting A as a graph,
adding a goal vertex to it, adding edges from each state q ∈ Q where c(q) is
defined to this goal vertex with cost c(q), and taking q0 as the starting vertex.
The remaining transitions have cost 1. By taking the shortest path up to the
point where an added edge is taken and then replacing it by the corresponding
lasso computed in the previous step, we easily obtain a shortest accepting lasso
for (Q,Σ, q0, δ, {(F,G)}).

The overall complexity of this procedure is clearly polynomial in |A|.



3.2 Generalized Büchi and Streett Automata

Rabin automata and their special cases have a certain property: On every shor-
test accepting lasso, no state can occur twice. This property does not hold for
generalized Büchi and Streett acceptance conditions. Intuitively, this can make
finding short accepting lassos significantly harder as the corresponding search
space is larger. Indeed, the length of a shortest accepting lasso cannot be ap-
proximated within any constant in polynomial time if P6=NP. We prove this
fact by reducing the Ek-Vertex-Cover problem [18] onto finding short accepting
lassos.

Problem 1. A k-uniform hypergraph is a 2-tuple G = 〈V,E〉 such that V is a
finite set and E ⊆ 2Q such that all elements in E are of cardinality k. Given
a k-uniform hypergraph H = 〈V,E〉, the Ek-Vertex-Cover problem is to find a
subset V ′ ⊆ V of minimal cardinality such that for all e ∈ E: e ∩ V ′ 6= ∅. It
has been proven that approximating the minimal size of such a subset within a
factor of (k − 1− ε) for some ε > 0 is NP-hard [19].

Consider a k-uniform hypergraph G = 〈V,E〉 for some arbitrary k ∈ IN. We
can easily reduce the problem of finding a small Ek-Vertex-Cover to finding
short accepting lassos in a generalized Büchi automaton over a one-element
alphabet Σ = {·}. We define A = (Q,Σ, q0, δ,F) with Q = V , δ(q, ·) = Q
for all q ∈ Q (so we have a complete graph) and F = E. Furthermore q0 is
set to some arbitrary element of Q. Given some vertex cover V ′ ⊆ V , it is
clear from the definition of A that for V ′ = {v1, . . . , vm}, the lasso (l, l′) with
l = q0v1 and l′ = v1v2 . . . vmv1 is accepting. On the other hand, an accepting
lasso (l, l′) with l = q0v1 and l′ = v1v2 . . . vmv1 induces a vertex cover V ′ ⊆ V
with V ′ = {v1, . . . , vm}. Therefore, this reduction preserves the quality of the
solutions up to a possible deviation of 1 (for the initial state of the lasso).

As the Ek-Vertex-Cover problem is reducible to finding short lassos (up to a
deviation of 1) and is NP-hard to approximate within a factor of (k− 1− ε) for
all k ∈ IN and ε > 0, we obtain the following result:

Theorem 2. Approximating the length of a shortest accepting lasso in general-
ized Büchi automata is NP-hard within any constant factor.

As generalized Büchi automata have a simple translation to Streett automata,
the same result holds for Streett automata as well. Note that these problems are
also in NP as verifying the validity of an accepting lasso is simple and the length
of a shortest accepting lasso in A = (Q,Σ, q0, δ,F) is bounded by |Q|2.

Thus, NP-completeness of these problems follows. Note that this line of rea-
soning also holds for the Muller acceptance condition to be discussed next.

3.3 Muller Automata

For finding short accepting lassos in Muller automata, we can use the same
scheme as for Rabin automata: Given a Muller automaton A = (Q,Σ, q0, δ,F)



with F = {F1, . . . , Fm}, we can search for short accepting lassos in each of the
automata (Q,Σ, q0, δ, F1), . . ., (Q,Σ, q0, δ, Fm) and take the shortest accepting
lasso we find in these automata as a shortest lasso for A. Thus, assuming that
we have a f(n)-approximation algorithm for a Muller automaton with a single
acceptance set running in polynomial time, this immediately gives rise to a
polynomial f(n)-approximation algorithm for general Muller automata.

For a lasso (l, l′) to be accepting for some Muller acceptance set F , all states
in F must occur in l′. As we can furthermore assume that the states in F ⊆ Q
form a strongly connected subset in Q (as otherwise F cannot be precisely the
set of states occurring infinitely often on a run), the problem of finding a short
accepting lasso is related to the asymmetric metric travelling salesman problem
(AMTSP), as we explain in the remainder of this section.

Problem 3. Given a set of cities C with |C| = n and a distance function d : C ×
C → IN0 such that d(c, c) = 0 for all c ∈ C and for every c1, c2, c3 ∈ C, d(c1, c2)+
d(c2, c3) ≤ d(c1, c3), the AMTSP-problem is to find a cycle c0, . . . , cn−1 such that
the cost of the cycle (i.e.,

∑n−1
i=0 d(ci, c(i+1) mod n)) is as small as possible.

It has been proven that in a special case of the AMTSP problem in which the
distance between two cities is either 1 or 2, the cost of the cheapest cycle cannot
be approximated within a factor of 321

320 − ε for some ε > 0 in polynomial time,
unless P=NP [20]. A simple reduction shows that this is also the case for finding
shortest accepting lassos in Muller automata:

Theorem 4. Approximating the length of a shortest accepting lasso within a
factor of 321

320 − ε for some ε > 0 in a Muller automaton is NP-hard.

Proof. Given an AMTSP-Problem 〈C, d〉 in which the distance between two
different cities is always 1 or 2, we reduce finding the length of a shortest cycle
to finding the shortest accepting lasso in a Muller automaton A = (Q,Σ, q0, δ,F)
over Σ = {·} with F = {F1, F2} by defining Q = C ] {Γ}, δ(c, ·) = {c′ ∈ C |
d(c, c′) = 1} ∪ {Γ} (for all c ∈ C), δ(Γ, ·) = C, F1 = C, F2 = Q and set q0 = c
for some arbitrary c ∈ C.

For every cycle of length j for some j ∈ IN, there exists an accepting lasso
of the same length starting with q0. Whenever an edge with cost 2 is taken, the
lasso is routed through Γ , the other edges can be taken directly.

On the other hand, each lasso cycle in A induces a cycle in 〈C, d〉 with a cost
equal to the length of the lasso by skipping over all visits to Γ . Without loss of
generality, we can assume that such an accepting lasso (l, l′) has l = q0.

As this way, the cost of the cycle and the lasso length coincide and approx-
imating the cost of a shortest cycle in 〈C, d〉 within 321

320 − ε is NP-complete for
all ε > 0, the claim follows.

Thus, also in the Muller automaton case, we cannot approximate the size of a
shortest accepting lasso arbitrarily well. However, the close connection between
the AMTSP problem and Muller automaton emptiness allows us to make use of
a positive approximation result for the AMTSP problem:



Theorem 5. Given a Muller automaton A = (Q,Σ, q0, δ,F) with F = {F1},
we can compute a lasso of length not more than plog2 |F1|q times the length of
a shortest one in polynomial time.

Proof. The problem can be solved using a plog2 |n|q-approximation algorithm for
the AMTSP problem [21]. We construct an AMTSP instance 〈C, d〉 by taking
C = F1 and for each pair of cities c1, c2 ∈ C with c1 6= c2, we use a standard
shortest-path finding algorithm for computing d(c1, c2), i.e., the length of the
shortest path through the graph of A restricted to F1 from state c1 to c2. For
every computed value, we store the corresponding path for later retrieval. Then,
we apply the approximation algorithm on 〈C, d〉 and obtain a tour of length
at most plog2 |F1|q · m, where m is the length of the optimal tour. As we can
assume that F1 is a strongly connected subset in A, taking the tour and stitching
together the individual respective parts we stored in the previous step results in
a lasso cycle with a length equal to the cost of the tour. By finding a shortest
path in A from q0 to one of the states in F1 and adding this path as first part
of the lasso, we obtain a complete accepting lasso. The approximation quality of
the solution follows directly from the definition of 〈C, d〉 and the fact that the
first part of the lasso is indeed as short as possible as all elements in F1 have to
occur on the cycle.

4 Finding Shortest Witnesses

In this section, we consider finding shortest witnesses, i.e., given some ω-auto-
maton A = (Q,Σ, q0, δ,F), the task is to find a word uvω for u, v ∈ Σ∗ that is
accepted by A with |u| + |v| being as small as possible. We show that approxi-
mating the length of a shortest such word within any polynomial is NP-complete
for all acceptance condition types considered in this paper, but we can approxi-
mate this length within any exponential function in polynomial time (for every
fixed alphabet Σ). We start with the hardness result.

Theorem 6. Given some polynomial function p, approximating the length of
a minimal witness in some safety-type ω-automaton A = (Q,Σ, q0, δ) within p
over a ternary alphabet Σ = {0, 1,#} is NP-hard.

Proof. The proof is based on a reduction from the satisfiability (SAT) problem,
which is known to be NP-hard (see, e.g., [22] for details).

We define a conjunctive normal form SAT-instance to consist of a set of
variables V = {v1, . . . , vm} and a set of clauses C = {c1, . . . , cn} (with ci :
V × {0, 1} → B for all 1 ≤ i ≤ n) which are formally functions such that
ci(vk, 1) = true if and only if vk is a literal in clause i and ci(vk, 0) = true if
¬vk is a literal in clause i (for all 1 ≤ k ≤ m, 1 ≤ i ≤ n).

We reduce the problem of determining whether there exists some valuation
of the variables that satisfies all clauses in C to finding some short witness in
some safety automaton A = (Q,Σ, q0, δ) over Σ = {0, 1,#} as follows:



– Q = {(i, j, k, b) ∈ IN3 × B | 1 ≤ i ≤ n, 1 ≤ j ≤ p(m), 1 ≤ k ≤ m+ 1, b⇒ k >
1} ∪ {⊥}

– q0 = (1, 1, 1, false)
– For all (i, j, k, b) ∈ Q, a ∈ {0, 1,#}, δ((i, j, k, b), a) is the union of:
• {(i, j, k + 1, b′) | k ≤ m, b′ = (b ∨ ci(vk, a))}
• {(i, j + 1, 1, false) | b = true, a = #, j ≤ p(m), k = m+ 1}
• {(i+ 1, 1, 1, false) | b = true, j = p(m), k = m+ 1, a = #, i ≤ n}
• {⊥} if b = true, j = p(m), k = m+ 1, a = #, b and i = n

– δ(⊥, a) = {⊥} for all a ∈ {0, 1,#}

Figure 1 gives an example of such an automaton for an example SAT-instance.
The key idea of this reduction is the following: The automaton built only ac-

cepts input words on which during the first p(m)(m+1)n input letters, precisely
every (m+ 1)th letter is a #. Furthermore, the letters in between represent val-
uations to the variables in the SAT instance. During the first p(m)(m+ 1) input
letters, it is checked that the solution given satisfies the first clause. Subsequent
parts of the input words are then checked against the next clause (and so on).
Now assume that a word uvω for which |u|+ |v| ≤ p(m)(m+1) holds is accepted
by the automaton. All parts in between two occurrences of # in the word repre-
sent variable valuations satisfying all clauses. On the other hand, if there exists
some valuation for the variables satisfying all clauses, then there exists a simple
word with |u| = 0 and |v| = m + 1 such that uvω is accepted. Therefore, by
using a p-approximation algorithm for finding the length of a shortest accepting
witness, we can check if there exists a valuation of V satisfying C.

This non-approximability result for finding (or even determining the mini-
mal size of) short witnesses is surprising. While finding short accepting lassos is
doable in polynomial time even for the more complex Rabin condition, approx-
imating the size of a shortest witness is NP-hard even for safety automata and
thus considerably harder. For the other acceptance condition types, the same
result holds as only the state ⊥ can be visited infinitely often on any accepting
run. It is trivial to build corresponding acceptance components for any of the
other acceptance condition types defined in this paper. The hardness proof given
above also holds for a binary alphabet with only a slight modification.

As in the case of finding short accepting lassos, the fact that the problem
of finding a shortest witness is actually contained in NP is easy to show: for all
automaton types considered, the problem of checking whether a word uvω is in
the language of the automaton is solvable in polynomial time. Furthermore, if
the language of the automaton is non-empty, then there exists some witness of
length not more than the square of the automaton’s number of states. By taking
together these facts, membership in NP trivially follows.

A natural question to ask at this point is which positive statements about
the approximability of this problem can be given. In this paper, we show the
following:

Theorem 7. Let c > 1 and Σ be some fixed finite alphabet. Given some ω-
automaton A = (Q,Σ, q0, δ,F) with any of the acceptance types considered in
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Fig. 1. Example automaton constructed from the SAT-instance (v1∨v2∨¬v3)∧(¬v1∨
v2) ∧ (¬v2 ∨ v3) as described in the proof of Theorem 6. In this example, we have
m = 3 and n = 3 with V = {v1, v2, v3}. The labels next to the braces explain the
structure of the automaton generated (with ∗ denoting that the states corresponding
to any suitable value at this point in the tuple are contained in the state set).

this paper, computing a word uvω such that |u|+ |v| is not longer than cn for n
being the minimal witness length can be done in time polynomial in |A|.

Proof. Note that for all acceptance types considered in this paper, checking
whether a word uvω is accepted by A is possible in time polynomial in |u|+ |v|
and |A|.

Furthermore, for all acceptance condition types, emptiness checking and the
extraction of an accepting lasso of size no longer than |Q|2 can be performed
in polynomial time. Therefore, we can iterate over all words uvω such that
|uv| ≤ plogc |Q|2q (which are only polynomially many) and check for each of
them whether they are in the language of the automaton. A cn-approximation
algorithm can thus return the shortest such witness, if found. In all other cases,
the simple accepting lasso of size not more than |Q|2 can be converted to an
accepting word by copying the edge labels. The fact that exponentially shorter
words would have been found by the first step suffices for proving the approxi-
mation quality of this algorithm.

Taking the results obtained in this section together, we obtain a quite precise
characterisation of the approximation hardness of finding short witnesses in ω-
automata: Approximating the size within any polynomial is NP-complete, but
the problem is approximable within any exponential function in polynomial time
for every fixed alphabet.



Table 1. Summary of the approximability results on finding short accepting lassos and
witnesses for the acceptance condition types considered in this paper. In all cases, it
is assumed that P6=NP and only algorithms running in time polynomial in the size of
the input are considered.

Acceptance cond. type Shortest accepting lassos Shortest witnesses

Safety, Büchi, co-Büchi, pa-
rity, Rabin

solvable precisely in polynomial
time

not approximable
within any
polynomial,
approximable within
every exponential
function for a fixed
alphabet

Generalized Büchi, Streett not approximable within any
constant, approximable within
every exponential function for a
fixed alphabet

Muller not approximable within 321
320
−ε,

approximable within plog2 |Q|q

As a final note, the exponential-quality approximation algorithm presented
in this section is also useful for finding short accepting lassos. Therefore, we
obtain the same upper bound on the approximation hardness of that problem.

5 Conclusion

In this paper, we have examined the problem of finding short accepting lassos and
witnesses for ω-automata of various acceptance condition types. We bounded the
borderline between NP-complete approximation problems and those in P from
both above and below (assuming that P 6=NP) by giving NP-hardness proofs
for numerous variations of the problem along with polynomial approximation
algorithms of lower approximation quality. Table 1 summarises the details of the
findings.

Additionally, for the case of short accepting lassos for Muller automata, we
have established its connection to the travelling salesman problem by identifying
it as special case of the asymmetric metric TSP.

We considered the automata types currently employed in model checking
applications as well as those that currently mainly serve as models in theoretical
works in order to fill the automata-theoretic toolbox for use cases which have
not been discovered yet.

At a first glance, the non-approximability results for Büchi and generalized
Büchi automata are discouraging: Assuming that P 6=NP, the implementation of
methods for extracting approximate shortest witnesses (or approximate shortest
lassos in the case of fair systems) for the non-satisfaction of a specification in fu-
ture model checkers appears not to be a fruitful idea. However, it should be noted
that the identification of these problems as being hard helps preparing the field
for the development of suitable heuristics. Also, the hardness results obtained
may serve as justification for developing counter-example quality metrics which
also base on other objectives than only their size.
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