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Abstract

We present constraint matrix diagrams (CMDs), a
novel data structure for the fully symbolic reachability
analysis of timed automata. CMDs combine matrix-
based and diagram-based state space representations
generalizing the concepts of difference bound matrices
(DBMs), clock difference diagrams (CDDs), and clock
restriction diagrams (CRDs). The key idea is to repre-
sent convex parts of the state space as (partial) DBMs
which are, in turn, organized in a CDD/CRD-like or-
dered and reduced diagram. The location information is
incorporated as a special Boolean constraint in the ma-
trices. We describe all CMD operations needed for the
construction of the transition relation and the reacha-
bility fixed point computation. Based on a prototype im-
plementation, we compare our technique with the timed
model checkers RED and Uppaal, and furthermore
investigate the impact of two different reduced forms
on the time and space consumption.

1 Introduction

A promising approach for automatically establishing
the correctness of real-time systems is model checking
of timed automata [2, 3, 1], in which an exhaustive
state space exploration is performed to check if the
system can ever transition into a state in which the
given specification is violated.

The set of reachable states is usually constructed
using a fixed point computation, which is performed
either in a forward or backward manner. In the former
case, states that are reachable from the respective pre-
fixed point (starting with the initial state) are added to
the next prefixed point until no more new states can be
added (or a reachable error state is found). In the back-

ward construction, the same process is started from the
set of error states until a fixed point is reached or the
initial state is found to be backward reachable. In both
cases, the prefixed point needs to be represented using
a suitable data structure.

State-of-the-art model checking techniques for timed
systems can broadly be classified into two cate-
gories: semi-symbolic approaches and fully symbolic
approaches [17, 22]. In semi-symbolic approaches, on
the one hand, the discrete part of the system under
consideration is represented explicitly while clock val-
uations are lumped together into clock zones, as done
in the model checker Uppaal [5]. These techniques
are well-suited for systems with a small discrete state
space. Fully symbolic approaches, on the other hand,
represent both timing and location information in a
symbolic way to lower the effect of state space explo-
sion, as done in the model checker RED [24].

Consequently, the development of suitable data
structures for the efficient representation of prefixed
points of reachable states has been an active field of
research in the last years. While the potential of ap-
proaches such as clock restriction diagrams (CRDs) [24]
or clock difference diagrams (CDDs) [18, 6] has been
shown in previous papers, the success of binary deci-
sion diagrams (BDDs) [10, 11], which greatly increased
the size of the systems that can be handled by discrete
model checkers [19], could not be reproduced to its full
extent in the case of timed model checking so far.

In this paper, we present progress towards closing
this gap by introducing constraint matrix diagrams
(CMDs), a CDD-like graph structure whose edges are
labeled with so-called constraint matrices, a structure
similar to difference bound matrices (DBMs), which is
capable of storing both the timing and location infor-
mation. Intuitively, like CDDs and CRDs, CMDs share
nodes for common subexpressions, but unlike CDDs
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Figure 1. CRD, CDD, and CMD representing
the same set of clock valuations.

and CRDs, CMDs collapse sequences of edges repre-
senting convex constraints into single edges. Figure 1
shows a comparison of the three data structures.

As a key feature, CMDs are not only able to store
the set of reachable states, but can also represent the
control structure of the system under consideration,
which permits the computation of the successor and
predecessor states during the run of the reachability
algorithm in a symbolic way by simple operations on
the CMD structure.

To show the effectiveness of this new approach, we
compare a prototype implementation of a CMD-based
model checker with RED and Uppaal on standard
benchmarks from the literature.

Related work. The efficiency of a timed model
checker strongly depends on the way in which the state
space is represented. In the last two decades, several
techniques to represent state spaces that consist of a
discrete and a continuous part were proposed.

Decidability of reachability (i.e., emptiness) check-
ing for timed automata was shown in [3] by construct-
ing the so-called region graph. For practical applica-
tions, however, this construction is too fine-grained.
A coarser representation of the continuous part of the
state space are clock zones [1], which can be efficiently

described using difference bound matrices (DBMs) [13].
However, operations on DBMs such as union or nega-
tion might lead to nonconvex sets which cannot be rep-
resented by a single DBM.

Asarin et al. [4] used BDDs to encode sets of clock
valuations as numerical decision diagrams (NDDs) us-
ing a discretization scheme based on region equiva-
lence. Similarly, Bozga et al. [9] approximated the pre-
cise clock values to discrete time steps, resulting in a
pure discrete semantics allowing a state space repre-
sentation using a single BDD. Based on closed timed
automata [7], a restricted form of classical timed au-
tomata where only nonstrict clock constraints are al-
lowed, Beyer introduced an integer semantics where
clock values and location information can be repre-
sented jointly in a single BDD. Besides the fact that
such pure BDD-based approaches are sensitive to the
magnitude of the clocks, it has been observed that the
BDDs can blow-up significantly due to interdependen-
cies in the timing behavior of the system.

Seshia and Bryant [22] solved the TCTL model
checking problem by representing sets of states by dif-
ference logic formulas which are, in turn, represented as
BDDs using a binary encoding. The clock differences
that need to be tracked in the fixed-point computa-
tion are encoded in so-called transitivity constraints,
which are added on-the-fly during the model checking
process. Even though they added some specialized op-
timizations for this case, the experimental results are
inconclusive.

Møller et al. introduced difference decision diagrams
(DDDs) [20], a BDD-like data structure in which each
diagram node is labeled with a difference constraint.
Here, the Boolean constraints, represented as special
differences, are interleaved with the clock constraints
in the diagram structure. Behrmann et al. proposed
clock difference diagrams (CDDs) [18, 6], a more space-
efficient data structure, which benefits from sharing
clock constraints for several clock zones. CDDs store
intervals of clock valuations in a BDD-like structure
as a rooted, directed, and acyclic graph. As a fur-
ther extension, Wang proposed clock restriction dia-
grams (CRDs) [24], in which the disjointness require-
ment is dropped. In contrast to CDDs, CRDs only
store upper bounds of clock differences. Location in-
formation is added to CRDs by adding binary variable
nodes. Diagram-based representations such as CDDs
or CRDs are efficient for fragmented state spaces which
are mainly nonconvex. However, they cannot exploit
convexity of parts of the state space, thus losing effi-
ciency on mostly convex state spaces.

Yamane and Nakamura [25] combined DBMs with
BDDs for implementing an approximation technique
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proposed by Dill and Wong-Toi [14]. Recently, we in-
troduced a model checking approach based on clock
zone maps (CZMs) [15], where clock zones, represented
as DBMs, are mapped onto sets of locations, repre-
sented as BDDs. As CZMs are a less flexible special
case of CMDs, the present work can be seen as a con-
tinuation of this line of research.

2 Preliminaries

For a set X, we use P(X) to refer to its power set.

2.1 Timed Systems

Clock Constraints. In the rest of the paper, we as-
sume that the set of clocks is given as C = {x0, . . . , xn},
where x0 is the special zero-clock whose value is always
0. The set of clock difference constraints over C is de-
fined as

Cons(C) = {a ≺1 xi − xj ≺2 b |
a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞},≺1,2∈ {<,≤},
0 < i ≤ n, 0 ≤ j < i}.

The set of diagonal-free clock constraints Cons0(C) ⊆
Cons(C) is defined as

Cons0(C) = {a ≺1 xi − x0 ≺2 b |
a ∈ N0, b ∈ N0 ∪ {∞},≺1,2∈ {<,≤}, 0 < i ≤ n}.

In the following, we use sets of clock constraints to
represent their conjunction and we write true for the
empty constraint set ∅.

Timed Automata. The components of a timed sys-
tem are represented by timed automata. A timed au-
tomaton [3, 1] is a tuple A = (L,L0, I,Σ,∆), where
L is a finite set of (control) locations, L0 ⊆ L are the
initial locations, I : L → P(Cons0(C)) maps each lo-
cation to an invariant, Σ is a finite set of actions, and
∆ ⊆ L × Σ × P(Cons0(C)) × P(C) × L is a relation
defining discrete location switches. Here, we require
that invariants do not have lower bounds.

A clock valuation ~t : C → R≥0 assigns a nonnega-
tive value to each clock and can also be represented by
a |C|-dimensional vector ~t ∈ R, where R = RC≥0 de-
notes the set of all clock valuations. For the special
zero-clock x0, we always have ~t(x0) = 0. The states
of a timed automaton are pairs (l,~t) of locations and
clock valuations. Timed automata have two types of
transitions: timed transitions, where only time passes
by and the location remains unchanged, and discrete

transitions. In a timed transition, the same nonneg-
ative value d ∈ R≥0 is added to all clocks such that,

for each 0 ≤ d′ ≤ d, ~t + d′ · ~1 satisfies the location
invariant I(l). In a discrete transition, for some ele-
ment δ = (l, a, ϕ, r, l′) of ∆, the state instantaneously
changes from (l,~t) to (l′,~t′) provided that (1) ~t satisfies
the guard ϕ, (2) ~t′ = ~t[r := 0] is obtained from ~t by
setting the clocks in r to 0, and (3) ~t′ satisfies the next
location invariant I(l′). We say that a timed state s′

is reachable from a timed state s iff there is a sequence
of timed and/or discrete transitions starting in s and
ending in s′.

2.2 Binary Decision Diagrams

For representing sets of locations symbolically, we
use reduced ordered binary decision diagrams (BDDs)
[10, 11], which describe characteristic functions f :
P(B) → B for some finite set of variables B. Since
they are well-established in the context of formal veri-
fication, we do not describe their details here but rather
treat them on an abstract level and only state the im-
portant operations (see [11] for an overview). Given
two BDDs (or more generally, two Boolean functions,
abbreviated as BFs) f and f ′, we define their conjunc-
tion and disjunction as (f ∧ f ′)(x) = f(x) ∧ f ′(x) and
(f ∨ f ′)(x) = f(x) ∨ f ′(x) for all x ⊆ B. The negation
of a BF is defined similarly. Given some set of variables
V ⊆ B and a BF f , we define ∃V : f as the function
that maps all x ⊆ B to true for which there exists
some y ⊆ V such that f(y ∪ (x \ V )) = true. Given
two ordered lists of variables W = w1, . . . , wn and
W ′ = w′1, . . . w

′
n of the same length, we furthermore

denote by f [W/W ′] the BF for which some x ⊆ B is
mapped to true if and only if f((x\{w′1, . . . , w′n})∪{wi |
∃1 ≤ i ≤ n : w′i ∈ x}) = true. For the scope of this
paper, we use sets of variables and their characteristic
functions interchangeably.

Binary functions can be used to encode sets of loca-
tions and purely discrete transition relations between
them. Given a set of locations L and a set of actions
Σ, we can represent a transition relation γ ⊆ L×Σ×L
as a BF over three lists of Boolean variables pre, post ,
and acts, which we use to encode the predecessor lo-
cations, successor locations, and actions in γ, respec-
tively. Then, the BF over B = pre ∪ post ∪ acts for
γ can be written as

∨
(l,a,l′)∈γ(l) ∧ (l′)′ ∧ (a)′′ for three

functions (·), (·)′, and (·)′′ mapping locations onto BF
valuations over pre and post , and actions onto acts,
respectively. For the sake of usefulness in model check-
ing, we additionally require the following properties:
• For all l ∈ L: (l)′[pre/post ] = (l);
• For all l, l′ ∈ L: l 6= l′ → (l) ∧ (l′) = false and for
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Figure 2. Graphical representation of the idx
function for the clocks C = {x0, x1, x2, x3}. For
a column xi and a row xj , the number shown
in the table is the index of a constraint of the
form a ≺1 xi − xj ≺2 b. For a BF constraint c,
we have idx(c) = 6.

all a, a′ ∈ Σ: a 6= a′ → (a)′′ ∧ (a′)′′ = false;
•
∨
l∈L(l) = true and

∨
a∈Σ(a)

′′ = true.

3 Constraint Matrices

In this section, we describe the matrix-based data
structure that is later used for labeling the edges of a
CMD. Our matrices are similar to DBMs, but can also
accommodate a Boolean constraint over the discrete
part of the state space.

For a set of clocks C and a set of BF variables B, an
atomic constraint (or just constraint) is either a clock
difference constraint from Cons(C) or a BF over B. We
say that two atomic constraints c1, c2 have the same
type if either both are BFs or c1 and c2 are clock dif-
ference constraints over the same pair of clocks. For
each atomic constraint c, we define its constraint index
(or just index) and write I to refer to the set of all in-
dices {0, . . . , Imax}, where Imax = n

2 ·(n+1). We define

idx(c) =
(∑

0≤k≤j(n− k)
)
−n+i−1 for all atomic con-

straints c = a ≺1 xi − xj ≺2 b and idx(c′) = Imax for
the atomic constraints c′ that are BFs. Intuitively, this
function induces a total order on the atomic constraint
types, which will be needed later to impose an order
of the constraints occurring along paths in a CMD.
The concrete idx function used in this paper assigns
the lowest indices to those clock constraints in which
the right-hand variable in the inequality has the low-
est number and the highest index to those where this
variable has the highest number. The BF is last in
the order. Figure 2 illustrates our definition of the idx
function for a setting with three clocks. However, for
the general applicability of our approach, the precise
definition of the idx function can be arbitrary as long
as it is a bijection between I and the constraint types.

A constraint matrix (or just matrix) m is a set of
atomic constraints in which no two different atomic
constraints have the same index. We define M as
the set of all constraint matrices. We write minIdx(m)

(maxIdx(m)) to refer to the minimal (maximal) index of
a constraint appearing in m. The conjunction c1∧c2 of
two atomic constraints c1 and c2 with idx(c1) = idx(c2)
is defined to be the least restrictive constraint that im-
plies both conjuncts. For two constraint matrices m1

and m2, we furthermore define:

m1 ∧m2 =

{c1 ∧ c2 | c1 ∈ m1 ∧ c2 ∈ m2 ∧ idx(c1) = idx(c2)} ∪
{c1 ∈ m1 | ∀c2 ∈ m2 : idx(c1) 6= idx(c2)} ∪
{c2 ∈ m2 | ∀c1 ∈ m1 : idx(c1) 6= idx(c2)}

For two constraint matrices m1 and m2, we say that
m1 implies m2, written as m1 ⇒ m2, if m1∧m2 = m1.
For two indices i and j with i ≤ j, we furthermore
define m↓ij = {c ∈ m | i ≤ idx(c) ≤ j} as the projection
of m onto the constraints with indices between i and
j. We say that a constraint matrix m is complete if it
ranges over all constraint types, i.e., |m| = Imax + 1.

Given some x ⊆ B, a clock valuation ~t, and a con-
straint matrix m, we say that (x,~t) satisfies m, written
as (x,~t) |= m, if for all c ∈ m, either (1) c is a BF
and c(x) = true; or (2) the constraint c is of the form
a ≺1 xi − xj ≺2 b and a ≺1 ~t(xi)−~t(xj) ≺2 b. The se-
mantics of a constraint matrix m is given as the set of
pairs of BF variable and clock variable valuations which
are represented bym: JmK =

{
s ∈ P(B)×R | s |= m

}
.

4 Constraint Matrix Diagrams

In this section, we formally introduce our diagram-
based data structure, characterize reduced forms, and
define necessary Boolean operations.

A constraint matrix diagram (CMD) over the
set of constraint matrices M is a tuple M =
(Q, q0, q>, type, E), where
• Q is a finite set of nodes,
• q0 ∈ Q is the root node,
• q> ∈ Q is the sink,
• type : Q→ I ∪ {Imax + 1} is a total function that

associates a constraint index to each node, and
• E ⊆ Q×M×Q is an edge relation.

Additionally, we require that (1) (Q,E) is a directed
acyclic graph with precisely one source node q0 and one
sink node q>; (2) type(q0) = 0 and type(q>) = Imax +1;
(3) for each edge (q,m, q′) ∈ E, minIdx(m) ≥ type(q)
and maxIdx(m) < type(q′). We define D as the set of
all CMDs.

If E is clear from the context, for convenience, we
write q

m−→ q′ for (q,m, q′) ∈ E. We write root(M) to
refer to M ’s root node q0. A (complete) path p of M
is a sequence of nodes and matrices of the form

q0
m0−−→ q1

m1−−→ . . .
mk−1−−−→ qk
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Figure 3. Splitting a CMD edge with common
lowest-index atomic constraints.

such that (qi,mi, qi+1) ∈ E, for each 0 ≤ i < k, and
qk = q>. We write nodes(p) = {q0, . . . , qk} to refer to
the nodes of p, and

∧
p to refer to the complete matrix

represented by p,
∧

0≤i<kmi. We refer to paths(M) to
denote the set of all paths of M . The semantics of M is
defined as JMK =

⋃
p∈paths(M)J

∧
pK. The empty CMD

is given (for some suitable function type satisfying the
properties stated above) by

cmd(false) = ({q0, q>}, q0, q>, type, ∅).

We convert a matrix m into a CMD by

cmd(m) = ({q0, q>}, q0, q>, type, {(q0,m
′, q>)}),

where m′ ⊇ m is a complete matrix that contains all
constraints from m plus, for each constraint type that
is not contained in m, the weakest possible constraint
with that type.

4.1 Reduced Forms

Unlike DBMs or BDDs, CMDs do not have a canon-
ical form which, for a set of states, defines a unique
CMD. For simplicity, we thus define the following two
types of reduced forms: (1) the diagram form where
a single edge may belong to many complete paths
and thus maximizes the sharing of common constraints
along the paths, and (2) the compact form where the
CMD comprises only the root node and the true node.
Note that, in general, one could also define other re-
duced forms. However, in this paper, we stick to the
two reduced forms mentioned above and leave the in-
vestigation of other forms as future work.

Formally, a CMD M = (Q, q0, q>, type, E) is in dia-
gram form iff

∀(q1,m1, q
′
1) ∈ E ∀(q2,m2, q

′
2) ∈ E :((

q1 = q2 ∧m1↓type(q1)
type(q1) = m2↓type(q2)

type(q2)

)
⇒
(
m1 = m2 ∧ q′1 = q′2

))
∧((

q′1 = q′2 ∧m1↓
type(q′1)−1

type(q′1)−1 = m2↓
type(q′2)−1

type(q′2)−1

)
⇒
(
m1 = m2 ∧ q1 = q2

))
.

>

2<x1<3
2<x2<3

2<x2−x1<3

2<x1<3
4<x2<5

5<x2−x1<7

4<x1<5
7<x2<8

5<x2−x1<7

(a) Compact form

>

2<x1<3 4<x1<5
7<x2<8

4<x2<5

2<x2<3
2<x2−x1<3 5<x2−x1<7

(b) Diagram form

Figure 4. Semantically equivalent CMDs.

Intuitively, this definition requires that in a CMD in di-
agram form, the overall number of atomic constraints
is minimized by introducing intermediate nodes in the
CMD whenever (1) two outgoing edges from the same
node in a CMD share their lowest-index atomic con-
straint, and (2) two ingoing edges to the same node
in a CMD share their highest-index atomic constraint.
Figure 3 shows an example of introducing such an in-
termediate node.

A CMD M = (Q, q0, q>, type, E) is in compact form
iff Q = {q0, q>}, i.e., all paths go directly from the
root to the true node. For illustration, Fig. 4 shows
two semantically equivalent CMDs that are in compact
and diagram form, respectively. Note that any CMD
can be transformed into both forms.

4.2 Boolean Operations

In this subsection, we describe a conjunction oper-
ator for two CMDs and a disjunction operator for a
CMD and a matrix. Both are used in the reachability
fixed point algorithm described in Sect. 5.

Disjunction. We start by explaining the disjunction
operator. The function Or : M × D → D takes a
matrix m and a CMD M to compute a CMD M ′ such
that JM ′K = JMK ∪ JmK. We give two versions of the
Or operator that maintain diagram and compact form,
respectively, and start with the former. Our concrete
definition of Or described below assures that if there is
a path p ∈ paths(M) with m⇒

∧
p then M ′ = M .

Before we come to the actual definition of Or for
the diagram form, we introduce some auxiliary defi-
nitions. The set of backward-deterministic paths, i.e.,
paths with a backward unique sequence of nodes, of
highest index i ∈ I is defined as

dpaths(M, i) =
{
p ∈ paths(M) |

∀q ∈ nodes(p) : type(q) ≤ i⇒ indeg(q) ≤ 1
}
,

where the indegree of q ∈ Q is defined as

indeg(q) = |{(q1,m, q2) ∈ E | q2 = q}|.
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With this definition, we define the set of backward-
deterministic prefixes of M for a matrix m:

dpref(M,m) =
{

(x, i) ∈ (E ∪Q)× I |

∃p ∈ dpaths(M, i) :
(∧

p
)
↓0i = m↓0i ∧(

x ∈ nodes(p) ∧ type(x) = i ∨
x = (q1,m

′, q2) ∈ E ∧ {q1, q2} ⊆ nodes(p) ∧

type(q1) < i < type(q2)
)}
∪ {(q0, type(q0))}

Due to the lack of space, we omit the (analogous) defi-
nition of the set of forward-deterministic suffixes of M
for a matrix m, dsuf(M,m).

With these auxiliary definitions, for a matrix m and
a CMD M , we can define Or(m,M) for the diagram
form in Algorithm 1. The basic idea is to (1) find a
maximal backward-deterministic prefix which starts in
q0 and ends in a node qf , (2) find a maximal forward-
deterministic suffix which starts in a node qb and ends
in q>, and (3) connect qf and qb by a matrix m′ ⊆ m
that contains the atomic constraints whose types do
not occur on the paths from q0 to qf and qb to q>.
First, in a forward traversal over the graph structure
(whose running time is linear in |Q| + |E|) starting in
q0, we check if m is already subsumed by some path
in M . During the same traversal, we compute a maxi-
mal backward-deterministic prefix, which is used in the
function SplitTop (Algorithm 2). Here, we determine qf
as a node that is already contained in M , or if the pre-
fix ends between two nodes q and q′, we split the edge
that connects q and q′, and introduce a new interme-
diate node qf . Then, in SplitBottom (Algorithm 3) we
analogously determine (or introduce a new) node qb in
a backward traversal over the graph structure (whose
running time is linear in |Q|+ |E|) starting in q>. Once
qf and qb are determined, we connect qf and qb with a
new edge labeled with m projected to the appropriate
constraint indices, mfb . Additionally, we also locally
remove all edges from qf to qb which are subsumed by
mfb . Note that if the input CMD M is in diagram
form, the CMD resulting from taking the disjunction
is also in diagram form.

Theorem 4.1 For two CMDs M and M ′, and a ma-
trix m, if M ′ = Or(m,M) then

1. JM ′K = JMK ∪ JmK and
2. if ∃p ∈ paths(M) : m⇒

∧
p then M ′ = M .

Sketch of proof: The first claim follows from
the fact that (1) SplitTop and SplitBottom do not
change the semantics of M , (2) since qf represents
a backward-deterministic prefix and qb represents a
forward-deterministic suffix, all paths that go through

Algorithm 1 Or(m,M), for a matrix m and a CMD
M = (Q, q0, q>, type, E).

if ∃p ∈ paths(M) : m⇒
∧
p then

return M /* do nothing */
else

(M ′′, qf ) := SplitTop(m,M)
(M ′, qb) := SplitBottom(m,M ′′, qf )

/* M ′ = (Q′, q0, q>, type
′, E′) */

mfb := m↓type
′(qf )

type′(qb)−1

E′ := E′ \ {(qf ,m′′, qb) ∈ E′ | mfb ⇒ m′′}
∪ {(qf ,mfb , qb)}

return M ′

Algorithm 2 SplitTop(m,M), for a matrix m and a
CMD M = (Q, q0, q>, type, E).

pick (x, i) ∈ dpref(M,m) s.t. i is maximal
if x = (q,m′, q′) ∈ E then
Q′ := Q ] {qf}, type′ := type[qf 7→ i]
E′ := E \ {x}

∪ {(q,m′↓type
′(q)

i−1 , qf )}
∪ {(qf ,m′↓itype′(q′)−1, q

′)}
return

(
(Q′, q0, q>, type

′, E′), qf
)

else /* x ∈ Q */
return (M,x)

Algorithm 3 SplitBottom(m,M, qf ), for a matrix m,
a CMD M = (Q, q0, q>, type, E), and a node qf ∈ Q.

pick (x, j) ∈ dsuf(M,m) s.t.
max(type(qf ) + 1, j) is minimal

if x = (q,m′, q′) ∈ E then
Q′ := Q ] {qb}, type′ := type[qb 7→ j]
E′ := E \ {x}

∪ {(q,m↓type
′(q)

j−1 , qb)}
∪ {(qb,m↓jtype′(q′)−1, q

′)}
return

(
(Q′, q0, q>, type

′, E′), qb
)

else /* x ∈ Q */
return (M,x)

6



qf and qb only differ between qf and qb, and (3) all
paths having an edge between qf and qb whose matrix
is subsumed by mfb ⊆ m are replaced by a new path
that exactly represents m. The second claim directly
follows from the first line of Algorithm 1. 2

The Or operator for the compact form is defined
by a slightly changed Algorithm 1, where the calls to
SplitTop and SplitBottom are replaced by qf := q0,
qb := q>, and M ′ := M .

Conjunction. We define the conjunction operator
And : D×D → D that takes two CMDs A and B, and
computes a third CMD C such that JCK = JAK∩JBK. It
recursively combines the paths of A and B, and com-
putes the conjunction of the matrices represented by
the paths. Instead of providing such a binary And op-
erator directly, we first define a more generic operator
AndApply that additionally takes a polymorphic func-
tion as parameter which, in turn, is applied to each
computed matrix combination. This will become useful
when defining the reachability algorithm in Sect. 5.2.
For a polymorphic type α, we define the function

AndApply : (D ×D × (M× α→ α)× α)→ α,

which is defined as

AndApply(A,B, f,X) :=

ApplyRec
(
root(A), root(B), f, true, X

)
,

where ApplyRec is defined in Algorithm 4. For two
CMDs A and B, a polymorphic function f :M×α→
α, and a context X ∈ α, the basic idea is to (1) re-
cursively combine each path of A with each path of B
thereby computing the conjunction of the constraints
observed along both paths, and (2) when the recursion
jointly reaches the sink nodes, we apply the function f
to the propagated matrix m and the context X. Note
that in practice, applying ApplyRec to CMDs in di-
agram form turns out to be time-efficient as (1) the
recursion can stop as soon as m becomes unsatisfiable,
and (2) only intersections on partial matrices have to
be computed.

We can now easily define And as follows:
And(A,B) := AndApply(A,B,Or, cmd(false)).

Theorem 4.2 For CMDs A, B, and C, if C =
And(A,B) then JCK = JAK ∩ JBK.

Sketch of proof: The correctness follows directly
from (1) the correctness of Or (Theorem 4.1), (2)
JAK ∩ JBK =

⋃
p∈paths(A)J

∧
pK ∩

⋃
p′∈paths(B)J

∧
p′K =⋃

p∈paths(A),p′∈paths(B)J
∧
p∧
∧
p′K, and (3) by structural

induction on ApplyRec. 2

Algorithm 4 ApplyRec(a, b, f,m,X), for two CMD
nodes a and b, a function f :M×α→ α, a matrix m,
and a context X ∈ α.
if m 6≡ false then
if a = b = q> then
return f(m,X)

else if type(a) = type(b) then

for all a
m′1−−→ a′ do

for all b
m′2−−→ b′ do

X := ApplyRec(a′, b′, f,m ∧m′1 ∧m′2, X)
else if type(a) > type(b) then

for all b
m′−−→ b′ do

X := ApplyRec(a, b′, f,m ∧m′, X)
else if type(a) < type(b) then

for all a
m′−−→ a′ do

X := ApplyRec(a′, b, f,m ∧m′, X)
return X

5 Model Checking using CMDs

In this section, we describe the actual CMD-based
timed reachability checking algorithm. Both forward
and backward reachability checking are possible with
our data structure. For the sake of brevity, we focus
only on the forward case since the backward case can
be done analogously.

In the following, we assume that some fixed timed
automaton A = (L,L0, I,Σ,∆), describing the system
under consideration, is given. Using the notation from
Sect. 2.2, for a CMD M , we define JMKL =

{
(l,~t) ∈

L ×R | ((l),~t) ∈ JMK
}

as the set of timed states rep-
resented by M .

5.1 Invariants and Transition Relations

As a prerequisite for the reachability algorithm, we
need to construct some CMDs that represent A’s con-
trol structure. More precisely, on the one hand, we
construct a CMD I such that (l,~t) ∈ JIKL if and only
if ~t |= I(l), i.e., I represents those timed states which
do not violate any location invariant. On the other
hand, for each set of resets r ⊆ C appearing in ∆, we
compute a CMD Tr over B and C such that for two
locations l, l′ from L and a clock valuation ~t, we have
((l)∧ (l′)′,~t) ∈ JTrK if and only if there exists some ac-
tion a ∈ Σ and a set of clock constraints ϕ with ~t |= ϕ
such that (l, a, ϕ, r, l′) ∈ ∆. That is, each Tr relates
those locations which are connected by a discrete loca-
tion switch with guard ϕ and resets r.

The function CreateInv(), defined in Algorithm 5,
constructs I. For a set of clock resets r ⊆ C, the func-
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tion CreateTrans(r), defined in Algorithm 6, constructs
Tr. The function iterates over the actions and loca-
tions and successively adds the transitions found to
the transition CMD B. Before returning it, the actions
are removed from the BFs in the CMD by existentially
quantifying them out. The function is straight-forward
to extend to, e.g., the verification of networks of timed
automata [1] by computing the transition CMDs A
for the individual automata in the network and tak-
ing their conjunction before removing the actions from
their BFs.

Algorithm 5 CreateInv().

A := cmd(true)
for all l ∈ L do
A := And

(
A,Or

(
¬(l), cmd(I(l))

))
return A

Algorithm 6 CreateTrans(r), for clock resets r ⊆ C.
A := cmd(true)
for all a ∈ Σ do
B := cmd(true)
for all l ∈ L do
C := cmd(¬(l))
for all l

a,c,r−−−→ l′ do
C := Or(c ∧ (l′)′, C)

B := And(B,C)
B := Or(¬(a)′′, B)
A := And(A,B)

return A, where each BF b is replaced by ∃acts : b

5.2 Reachability Algorithm

In this subsection, we present the actual reachabil-
ity algorithm that checks if some target states (e.g., the
states that violate a safety property) are reachable from
some source states (e.g., the initial states L0×R). The
computation is carried out in a least fixed point con-
struction that starts with the source states and com-
putes a successively increasing series of so-called pre-
fixed points converging to those states which are ex-
actly reachable from the source states. Each prefixed
point is represented as a CMD over the set of clocks C
and the BF variables pre.

For a complete constraint matrix, we define the clock
reset operator m[r := 0], for r ⊆ C, and the time elapse
operator m⇑, which are defined analogously to those
defined for DBMs [13] (by ignoring the BF constraint).
Note that for these operations, analogously to DBMs,
we assume the matrix to be in canonical form, i.e., each

constraint is as strong as possible. We assume that the
time elapse operator also performs maximal constant
widening to ensure that only finitely many matrices
will arise in the forward analysis [8].

Before we come to the actual definition of the algo-
rithm, we first introduce the operator Succ : P(C) ×
D →M×D → D which constructs, for a set of clock
resets r ⊆ C and an invariant CMD I, a corresponding
successor function:

Succ(r, I) := λ(m,R).

AndApply
(
Post(m[r := 0]), I,Or, R

)
Here, Post : M → D is the combined symbolic post
operator Post(m) := cmd(∃post : m⇑[pre/post ]). More
clearly, if f = Succ(r, I) then, for a complete matrix
m and a CMD R, f(m,R) returns a CMD that repre-
sents all states from JRKL extended by precisely those
states which are reachable from JmKL by first executing
a discrete and then a timed transition.

With these and the other definitions from the pre-
vious sections, we can state Algorithm 7, which repre-
sents a sound and complete CMD-based decision pro-
cedure for checking timed reachability.

Algorithm 7 Reachable(sources, targets), for two
CMDs sources and targets.

for all relevant r ⊆ C do
Tr := CreateTrans(r)

I := CreateInv()
R := And(sources, I)
D := R
while JDK 6= ∅ and JAnd(D, targets)K = ∅ do
D′ := cmd(false)
for all relevant r ⊆ C do
R := AndApply

(
D,Tr,Succ(r, I), R

)
for all newly added matrices m in R do
D′ := Or(m,D′)

D := D′

return JAnd(R, targets)K 6= ∅

In the computation of the successor states, by keep-
ing track of all matrices m that modify R in an
Or(m,R) operation, we avoid an expensive comparison
of two CMDs representing subsequent prefixed points.

Theorem 5.1 The following statements hold true:
1. Algorithm 7 terminates in a finite number of steps;
2. For two CMDs sources and targets, some states

in JtargetsKL are reachable from some states in
JsourcesKL iff Reachable(sources, targets) is true.

Sketch of proof: The first claim follows from the fact
that (1) there are only finitely many BFs, (2) there are
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only finitely many difference constraints since we apply
a finiteness-ensuring widening after time elapsing m⇑,
and (3) Or(m,M) leaves M unchanged if m is already
subsumed in M . The correctness of the widening op-
eration is guaranteed since we only allow diagonal-free
constraints in the definition of timed automata [8].
The second claim follows (1) by structural induction
on AndApply, (2) from the fact that the clock reset
and time elapse operations are only performed on com-
plete matrices, (3) from the fact that in each itera-
tion of the while loop of Algorithm 7, for each relevant
r ⊆ C, pd ∈ paths(D), pt ∈ paths(Tr), pi ∈ paths(I),
JRKL is extended by

q
∃post :

(
(
∧
pd ∧

∧
pt)[r :=

0]⇑[pre/post ]
)
∧
∧
pi

y
L

, which corresponds exactly to
the classical post operator for symbolic timed and dis-
crete model checking, and (4) by induction over the
construction of R. 2

6 Experimental Results

6.1 Prototype Implementation

We implemented a CMD prototype model checker
in C++ using the CuDD BDD library [23] to represent
the BFs in the constraint matrices. The first step is to
call the Nova tool from the SIS toolset [21] to find effi-
cient assignments of control locations to BDD variable
valuations for all timed automata in the given network.
This defines the functions (·) and (·)′ for the automata
in the network. We then take the Cartesian product of
these functions for the individual automata to obtain
the functions (·) and (·)′ for the product automaton.

A run of our tool is parametrized in (1) the direction
of exploration: either forward or backward, and (2) the
reduced form of the CMDs: either diagram or compact.
Depending on the selected reduced form, the appropri-
ate disjunction operator Or is chosen. Depending on
the direction of exploration, as described in Sect. 5.1,
we initialize the CMDs representing the transition re-
lations for the various clock resets of the input timed
system. Then, as written in Sect. 5.2, we compute the
fixed point of (forward or backward) reachable states.
If the direction of exploration is backward, before we
construct the transition relation, we also compute an
over-approximation of the discrete forward reachable
states in a (cheap) purely BDD-based fixed point con-
struction. Then, the backward fixed point construction
starts with the error states restricted to the forward
reachable discrete states.

Note that our prototype does not make use of any
other optimization techniques such as, e.g., symmetry
reduction, or redundant clock removal.

6.2 Benchmarks

We evaluated our approach on several bench-
marks1 from the real-time model checking domain.
When checking safety properties, we check the
(un)reachability of error states. When checking
bounded liveness properties, we (1) add an additional
observer automaton that enters a timeout location af-
ter a certain amount of time without having seen the
global goal event, and (2) check the (un)reachability of
the timeout location.

The Gear Production Stack (GPS) benchmark rep-
resents a manufacturing plant that consists of com-
municating processing stations. Whenever a gear is
loaded into the plant, it gets processed by each station
in a sequential manner. We check the bounded liveness
property whether a gear is always processed within a
certain time. The FlexRay benchmark (introduced in
[15]) represents the physical layer protocol of FlexRay’s
CODEC process as defined in [16], using a simplified
model of an unreliable physical layer. As a safety prop-
erty, we check that in the received message there is no
deviation from the sent message. The Fischer bench-
mark models Fischer’s mutual exclusion protocol. We
check the safety property that two processes never en-
ter the critical section at the same time. Here, the mod-
els that do not satisfy the property (Sat=No instances
in Table 2) comprise two processes that have unsafe
timing parameters. The FDDI benchmark models a
fiber-optic token ring local area network [12]. We check
the safety property that the token is always at exactly
one station. The Leader Election benchmark models
a timed leader election in a ring protocol. We check
the bounded liveness property that a leader is always
elected within a certain time.

6.3 Results

We compared the results of our prototype with the
real-time model checkers RED version 8.100429 [24]
and Uppaal version 4.0.11 [5]. While our prototype
can do both forward and backward reachability check-
ing, RED only performs a backward reachability anal-
ysis, and Uppaal only does a forward analysis. All ex-
periments were executed on a 2.6 GHz AMD Opteron
processor running Linux. The time limit was set to
four hours (TIMEOUT) while the memory peak con-
sumption limit was set to 4 GB (MEMOUT).

Table 2 shows the results of the comparison, where
all running times are given in seconds and the memory
peak consumptions are given in MB. In the first two

1The models are available at
http://www.avacs.org/Benchmarks/Open/rtss10.tgz
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columns, the benchmark instance is specified. Then,
in the next four columns, the results for our prototype
CMD model checker are given comprising the mode
(B/F = backward/forward reachability analysis, D/C
= diagram/compact reduced form), the number of ex-
ploration steps (i.e., fixed point iterations), the run-
ning time, and the memory peak consumption. The
next three columns show the results for RED compris-
ing the number of exploration steps, the running time,
and the memory peak consumption. In the last four
columns, the results for Uppaal are shown comprising
the command line parameters (-C = use DBMs, -S2 =
aggressive space optimization), the number of explored
states, the running time, and the memory peak con-
sumption. For our prototype and Uppaal, we always
selected the mode/parameters with the best running
times without suffering running out of memory.

For the GPS benchmark, our prototype model
checker always clearly outperforms both RED and Up-
paal. Here, the fully symbolic state space representa-
tion as well as the small number of distinct clock dif-
ference constraints which arise in the reachable states
turn out to be beneficial for CMDs. As already ob-
served in [15], the (discrete) data-intensive FlexRay
benchmark greatly benefits from a BDD-based repre-
sentation of the untimed part of the state space. Here,
our approach is capable of handling messages up to
the full length of 262 bytes, which is not possible for
RED or Uppaal. Interestingly, our approach also out-
performs RED and Uppaal on the safe Fischer in-
stances. However, for the unsafe Fischer instances,
the semi-symbolic reachability analysis in Uppaal ap-
pears to be very effective here. The correctness of the
FDDI instances can be established already in the pure
discrete over-approximation that is computed prior to
the actual precise reachability fixed point construction.
That is why our prototype as well as RED outper-
form Uppaal on this benchmark. On the Leader Elec-
tion benchmark, our prototype performs better than
RED but cannot compete with Uppaal. Similar to
the unsafe Fischer instances, it appears that the semi-
symbolic approach is more appropriate here.

Table 3 shows the performance of our prototype for
different parameter combinations. Here, one can ob-
serve that, e.g., Fischer benefits from the diagram re-
duced form, while, e.g., FlexRay performs better with
the compact form.

To have a fair comparison with RED on the Fischer
benchmark, we ran RED (1) on nonparametrized mod-
els where each process is explicitly modeled as a sepa-
rate timed automaton, and (2) on parametrized mod-
els comprising one timed automaton template which

RED

Benchmark Sat Steps Time Mem

Fischer (param.) 13 No 14 447 1314
Fischer (param.) 14 No 14 1270 2209
Fischer (param.) 15 No MEMOUT
Fischer (param.) 13 Yes 5 346 1444
Fischer (param.) 14 Yes 5 1019 2685
Fischer (param.) 15 Yes MEMOUT

Table 1. RED on the parametrized Fischer
benchmark.

is instantiated for each process2. The results for the
parametrized instances are shown in Table 1. Since
our prototype does not make use of the additional in-
sight that is given through the parametric modeling,
we used the nonparametrized models in the compari-
son shown in Table 2. However, as one can see in both
tables, our prototype also outperforms RED on the
unsafe parametrized Fischer instances.

7 Conclusion and Outlook

We presented clock matrix diagrams, a novel data
structure for representing state sets in the fully sym-
bolic reachability analysis of real-time systems. In con-
trast to pure matrix-based or pure diagram-based ap-
proaches, CMDs are more versatile as they represent
convex subparts as matrices and arrange them in a dia-
gram structure. Inspired by the very promising results,
we plan to investigate constraint ordering heuristics,
and beyond reachability checking, other application ar-
eas such as abstraction refinement or timed game solv-
ing based on CMDs.
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