
Monitoring Realizability⋆

Rüdiger Ehlers and Bernd Finkbeiner

Reactive Systems Group
Saarland University

66123 Saarbrücken, Germany

Abstract. We present a new multi-valued monitoring approach for
linear-time temporal logic that classifies trace prefixes not only according
to the existence of correct and erroneous continuations, but also accord-
ing to the strategic power of the system and its environment to avoid or
enforce a violation of the specification. We classify the monitoring status
into four levels: (1) the worst case is a violation, where no continuation
satisfies the specification any more; (2) unrealizable means that the en-
vironment can force the system to violate the specification; (3) realizable

means that the system can enforce that the specification is satisfied; (4)
the best case, fulfilled, indicates that all possible continuations satisfy
the specification. Because our approach recognizes situations where the
system cannot avoid a violation even though there may still be continu-
ations in which the specification is satisfied, our approach detects errors
earlier, and it detects errors that are missed by less detailed classifica-
tions. We give an asymptotically optimal construction of multi-valued
monitoring automata based on parity games.

1 Introduction

One of the guiding principles of runtime monitoring is that violations of the spec-
ification should be reported as early as possible, giving the user (or controller)
time to act before the violation causes serious harm. The principle means that
the monitor must reason about the future: we issue a warning as soon as we
can predict that a violation is about to occur. The standard implementation of
this idea is to consider a finite trace as bad if all its infinite extensions violate
the specification. In other words, as long as there exists a future in which the
specification is satisfied, we assume that this future will actually occur and do
not issue a warning.

In this paper, we revisit this optimistic interpretation of the future. In reality,
not all future actions are under the system’s control. It is therefore possible
to reach situations where the system can no longer avoid the violation, even
though there exists some continuation in which the violation does not occur.
Such situations are important early indicators of failure: we know for sure that

⋆ This work was partly supported by the German Research Foundation (DFG) under
the project SpAGAT (grant no. FI 936/2-1) in the priority programme “Reliably
Secure Software Systems – RS3”.

2 R. Ehlers, B. Finkbeiner

ignite � · · ·
charge � · · ·
spark � · · ·

Monitor � � � � � � � ⋆ ⋆ ⋆ ⋆ ⋆ � � � � � � � · · ·

Legend:
� false

� true

X fulfilled

� realizable

⋆ unrealizable

 violation

Fig. 1. Example execution and monitoring trace of a faulty ignition controller. The
controller responds correctly to the first ignition request, by charging the coil and then
emitting a spark. The specification is realizable (�), but not fulfilled (X), because there
exists a continuation that violates the specfication. After the second ignition request,
the controller fails to charge the coil. The monitor therefore switches from realizable to
unrealizable (⋆). At the third ignition request, the monitor switches back to realizable

and stays, because the controller responds correctly, in realizable until the spontaneous
third spark occurs. At this point, the monitor recognizes a violation ().

the system does not satisfy its specification, we just cannot guarantee that the
violation will be visible on the execution we are about to see.

Consider a car ignition controller that needs to charge a coil before emitting a
spark, and that is, to save energy, only allowed to start charging when an ignition
request is issued. The controller has an input signal ignite and two output signals
charge and spark, whose behavior could be specified in linear-time temporal logic
as follows (abstracting from implementation details like the charging time and
other activities of the ignition controller):

ψ = ¬spark ∧ ¬spark W charge ∧(spark → (¬spark W charge))

∧ ¬charge ∧ (charge → ignite) ∧ (ignite → spark)

Under what circumstances should we raise an alarm? Clearly, it is appropriate
to issue a warning if charge is activated without an ignition request or if a spark is
emitted without previously charging the coil. In both situations, the specification
is definitely violated, because there is no possible continuation into the future
that would satisfy the specification. However, a smart observer would be able
to recognize problems earlier than that. Suppose an ignition request is given,
but the system does not immediately charge the coil in the next step. It is easy
to see that this is a mistake, because now the system can no longer prevent
the conjunct (ignite → spark) from becoming false: if no more ignition
requests come in, then the coil will never be charged, and, hence, the spark can
never be emitted.

How can we recognize such mistakes? One way to characterize the situation
is to observe that there exists an extension that violates the specification. This
condition is easy to check, we simply monitor the negation of the specification
as well. However, issuing a warning whenever there exists a violating extension
would be overly pessimistic: Since, right from the start, there always exists a
path that violates the specification, we would continuously warn that things
“may” go wrong.

The exact right time for the warning is when there is an ignition request
but the coil is not charged in the very next step. At this point, we not only

Monitoring Realizability 3

know that there exists a continuation that violates the specification, we can
actually identify the inputs a malicious environment would need to produce in
order to enforce that the violation will occur. We say that in this situation the
specification is unrealizable. While it is still too early to tell if the specification
will really become violated (if a second ignition comes in and the system charges
the coil at that time, things are fine), the system under observation must be
faulty because there is no system that satisfies the specification for all possible
future inputs.

In this paper, we give a precise analysis of the possible futures by distin-
guishing the different roles played by outputs, which are under the system’s
control, and inputs, which are chosen by the (potentially hostile) environment.
This results in a finer classification of the monitoring situation with four different
conditions, going from worst case to best case as follows:

1. violation: the specification is definitely violated, i.e., there is no more con-
tinuation that satisfies the specification;

2. unrealizable: the specification is not violated but unrealizable, i.e., the envi-
ronment can force the system to violate the specification;

3. realizable: the specification is not fulfilled but realizable, i.e., there is a con-
tinuation in which the specification is violated, but the system can enforce
that the specification is satisfied; and

4. fulfilled: the specification is definitely satisfied, i.e., there is no continuation
that violates the specification.

Figure 1 shows an execution trace of a faulty ignition controller, which occa-
sionally fails to charge the coil and at some point produces a spontaneous spark.
The monitor starts out in condition realizable, and switches to unrealizable when
there is an ignition request but the coil is not charged. This alert is serious: a
bug has been detected. However, the monitor does not report a violation yet,
and indeed, in the trace, the user reacts by requesting another ignition, and
when, this time, the coil is charged, the monitor switches back to realizable.
Only when, later, there is a spontaneous spark, the monitor raises the alarm:
the specification is definitely violated at that point.

Semantically, our approach is a departure from the classic linear-time ap-
proach to runtime monitoring. Distinguishing inputs and outputs naturally leads
to games, rather than sets of traces, as the underlying model of computation.
Figure 2 shows the game between the ignition controller and its environment.
The two players take turns. In the states owned by the system player the ig-
nition controller chooses the outputs, in the states owned by the environment
player, the environment chooses the inputs. The winning condition is expressed
as a parity condition: if the highest number that appears infinitely often during
a play of the game is even, then the system player wins, otherwise the envi-
ronment player wins. From the initial state, the system player has a winning
strategy: always stay in states A through F . If the system player deviates from
this strategy by moving from state C to state G, then the environment player
has a winning strategy: from state G, always move to state H , never back to C.
If, however, the environment player does at some point move back to C, then

4 R. Ehlers, B. Finkbeiner

F : 1

A : 2 B : 2 C : 1 D : 1 E : 1

realizable

G : 1 H : 1 unrealizable

I : 1 J : 1 violation

¬charge

∧¬spark

¬ignite ignite

charge

∧spark ¬ignite

¬charge

∧¬spark

charge

∧¬spark
ignite

¬ignite

¬spark

∧¬charge

ignite

¬
spark

charge

∧¬spark

true

spark ∨
charge

s
p
a

r
k

∧
¬

c
h

a
r
g
e

sp
ark

∨
charg

e

sp
ark

spark ∧ ¬charge

charg
e

G : 1

Fig. 2. Parity game between the ignition controller and its environment. Positions
owned by the system player are shown as circles, positions owned by the environment
as squares. The system player has a winning strategy from states A through F , the
environment player has a winning strategy in all other states. From states I and J ,
the environment player wins no matter how the strategy is chosen. A runtime monitor
tracing this game will report realizable in states A through F , unrealizable in states G

and H , and violation in states I and J .

the system player has again a winning strategy. The game is definitely lost for
the system player if the play reaches states I or J , indicating that the system
player has issued a spark or charge out of turn. From these states, the game is
won by the environment player, no matter which moves are chosen.

The runtime monitor traces the states in the game while processing the ob-
servations from the monitored system. In states A through F , the status is
realizable, because the system player has a winning strategy, in states G and H ,
the status is unrealizable, because the environment player has a winning strategy,
and in states I and J , the status is violation, because the environment player
wins independently of the strategy. In the paper, we explain the construction of
the game and the resulting monitor in more detail. We start by converting the
specification to an equivalent deterministic parity automaton and its correspond-
ing parity game. Solving the game partitions the automaton into sets of states
corresponding to the four monitoring conditions. Based on this classification, we
construct a finite-state machine that implements the monitor.

In the last technical section of the paper, Section 4, we add one more twist to
the game-based analysis: in addition to recognizing whether one of the players
has a winning strategy, we check if the violation or fulfillment of the specification
can be enforced in a finite number of steps. This allows the user to estimate the
urgency of the unrealizable monitoring status: if the number of steps is finite,
then the system is in imminent danger; if not, we know that, while the system
cannot avoid the violation without help from the environment, the system can
at least delay the violation for an unbounded number of steps.

Monitoring Realizability 5

Related work. There has been a long debate in runtime verification about
the best way to translate specifications, which refer to infinite computations,
into monitors, which are limited to observing finite prefixes. Kupferman and
Vardi coined the term informative prefix for prefixes that “tell the whole story”
why a specification is violated [11]. The advantage of informative prefixes is that
one can monitor the specification without analyzing the future. For example, one
can translate the specification into a small equivalent alternating automaton and
track the active states in disjunctive or conjunctive normal form [7]. However,
informative prefixes are usually longer than necessary. For example, an informa-
tive prefix of the specification false has length one, although one could deduce
the violation of the formula without seeing any trace at all. In order to recognize
violations earlier, one needs to quantify over the possible futures. A prefix is
bad [11] if there is no infinite extension that satisfies the specification. In order
to construct a monitor that recognizes the bad prefixes, one translates the for-
mula into an equivalent nondeterministic Büchi automaton, eliminates all states
with empty language, and then determinizes with a powerset construction into
an automaton on finite words that recognizes the bad prefixes. d’Amorim and
Roşu showed that the runtime overhead caused by monitoring can be reduced
significantly by recognizing when the observed prefix can no longer be extended
to a bad prefix and pruning such “Never-Violate” states from the monitor [3].

Our approach to check realizability in addition to satisfiability builds on al-
gorithms for reactive synthesis. In synthesis, we check whether the specification
is realizable, i.e., whether there exists an implementation for the given specifi-
cation. Similar to our monitoring approach, one analyzes the game between the
system and its environment and searches for a winning strategy for the system
player [2]. The key difference between checking and monitoring realizability is,
however, that in synthesis we only check for the existence of a strategy from the
initial state, whereas in monitoring we make this judgment again and again, as
we observe a growing prefix of a trace.

The monitoring work that is closest to our approach is interface monitoring
as proposed by Pnueli et al. [16]. In this work, an interface monitor is compiled
from a module implementation together with its interface specification. The
analysis considers a game, where the nondeterminism of the module is seen as
one player and the interface behavior as the other. It is assumed that the interface
is trying to satisfy both its own specification and the global specification, and
the module is trying to produce a violation. In contrast to this approach, we
monitor the behavior of the system rather than its interface, because we are
interested in execution faults where the behavior of the system deviates from
its specification. In order to obtain monitors of reasonable size, we also avoid
encoding the implementation of any part of the system into the monitor.

The approach of this paper can be seen as an extension of three-valued mon-
itoring of linear-time temporal logic [1]. Taking the input/output interface of a
system into account significantly increases the usefulness of multi-valued moni-
toring, because now even violations of liveness constraints that depend on input
to the system can be detected.

6 R. Ehlers, B. Finkbeiner

2 Monitoring Reactive Systems

We are interested in monitoring reactive systems, which interact with their en-
vironment over a potentially infinite run. We start by recalling standard notions
and constructions from runtime monitoring.

2.1 Preliminaries

Interfaces. The interface of a reactive system is defined as a tuple I =
(API ,APO), where API is a finite set of input signals to the system and APO is
a finite set of output signals. Together, the two sets form the atomic propositions
AP = API ⊎APO of the system. During the execution of the system, it produces
a (potentially infinite) word w = w0w1 . . ., where, in every step, the valuation
of the input signals is read and the respective valuation of the output signals is
produced, i.e., for every i ∈ IN, wi ∈ 2API ×2APO . We call the words produced by
the execution of a system also the traces of the system. Depending on whether
it is assumed that in every step first the input or output is read, the system
model corresponds to the one of Mealy or Moore machines [13], respectively.
The techniques in this paper are equally applicable in both models, although we
assume a Moore machine model in the following.

Execution trees. The behavior of a (deterministic) reactive system with in-
terface I = (API ,APO) can be represented as an infinite tree 〈T, τ〉, where
T ⊆ (2API)∗ is the set of nodes of the tree, and τ : T → 2APO is the labeling
function of the tree, i.e., it decorates every node of the tree with an output. The
meaning of an execution tree is as follows. If t = t0 . . . tn ∈ T is the input of the
system read since the system went into service, then τ(t) is the output of the sys-
tem in the n+1st clock cycle. We say that an infinite path p = p0p1 . . . ∈ (2API)ω

induces a word/trace w = (p0, τ(ǫ))(p1, τ(p0))(p2, τ(p0p1)) . . . ∈ (2API × 2APO)ω

in the execution tree. An execution tree is called full if T = (2API)∗.
The idea behind execution trees is that the decision of the next output is

based on the entire history of inputs received so far. A reactive system is assumed
to have a full execution tree: because it has no control over the input, any input
sequence can arise during its execution.

We say that an execution tree (or a reactive system represented by the tree)
satisfies some word language L ⊆ (2API × 2APO)ω if every word that is induced
by some path in the tree is contained in L.

Linear-time temporal logic (LTL). LTL [14] is a commonly used specifi-
cation logic for reactive systems. LTL describes linear-time properties, i.e., sets
of correct traces. Formulas in LTL are built from atomic propositions, Boolean
operators and the temporal operators (globally), (finally), U (until) and
W (weak until). Given an infinite trace w = w0w1 . . . ∈ (2AP)ω over some set of
atomic propositions AP, we define the satisfaction of an LTL formula inductively
over the structure of the LTL formula. Let φ1 and φ2 be LTL formulas and wi

denote the suffix of a word w = w0w1 . . . starting from the ith element, i.e.,
wi = wiwi+1 The semantics of LTL is defined as follows:

Monitoring Realizability 7

– w |= p if and only if (iff) p ∈ w0 for p ∈ AP
– w |= ¬ψ iff not w |= ψ
– w |= (φ1 ∨ φ2) iff w |= φ1 or w |= φ2

– w |= (φ1 ∧ φ2) iff w |= φ1 and w |= φ2

– w |= φ1 iff w1 |= φ1

– w |= φ1 iff for all i ∈ IN, wi |= φ1

– w |=φ1 iff there exists some i ∈ IN such that wi |= φ1

– w |= (φ1Uφ2) iff there exists some i ∈ IN such that for all 0 ≤ j < i, wj |= φ1

and wi |= φ2

– w |= (φ1Wφ2) iff for every i ∈ IN such that w0 6|= φ2, w1 6|= φ2, . . ., wi−1 6|=
φ2 and wi 6|= φ2, also for all 0 ≤ j < i, wj |= φ1.

The set of traces that satisfy an LTL formula is called its language. The length of
an LTL formula is defined as the number of occurrences of operators and atomic
propositions. We say that an execution tree (or a reactive system) satisfies an
LTL formula ψ if it satisfies the language of the formula.

Runtime monitoring. As discussed under related work, there are multiple
definitions of the LTL runtime monitoring problem. The “standard” problem
defined in the following is based on three-valued monitoring [1]. We wish to
observe the trace of the reactive system and raise an alarm whenever the trace
prefix cannot be completed into an infinite trace that satisfies the specification,
and to raise a success signal whenever the trace cannot be completed to one
that does not satisfy the specification. Given an LTL formula φ over a set of
atomic propositions AP, we can build a monitor automaton for φ, i.e., a finite
state machine that observes the input and output of a system and where every
state is labeled by safe, unknown or bad. During the run of the monitor, the
state labels represent whether the prefix trace observed witnesses the violation
or satisfaction of the formula by every continuation of the prefix trace. Formally,
such a monitor is represented as a tuple M = (S,Σ, δ, s0, L), where S is the
set of states, Σ = 2AP is the input alphabet, δ : S × Σ → S is the transition
function, s0 ∈ S the initial state and L : S → {safe, unknown, bad} is the labeling
function. We also say that (S,Σ, δ, s0) is the transition structure of M. Given
a finite word w = w0w1 . . . wn ∈ (2AP)n, we say that w induces a (prefix) run
π = π0 . . . πn+1 in M such that π0 = s0 and for every i ∈ {0, . . . , n}, we have
πi+1 = δ(πi, wi). By abuse of notation, we write πn+1 = δ(s0, w0 . . . wn).

A finite-state machine M = (S,Σ, δ, s0, L) with Σ = 2AP represents a moni-
tor for an LTL formula φ over AP if the following conditions are satisfied: (1) for
every w ∈ (2AP)∗, L(δ(s0, w)) = bad if and only if for all w′ ∈ (2AP)ω, ww′ 6|= φ

(so the formula can no longer be satisfied); and (2) for every w ∈ (2AP)∗,
L(δ(s0, w)) = good if and only if for all w′ ∈ (2AP)ω, ww′ |= φ (so the for-
mula will be satisfied whatever happens in the future). We call the set of prefix
traces that lead to a good state in a monitor the good prefixes, and the prefix
traces that lead to a bad state in a monitor its bad prefixes.

Constructing runtime monitors for LTL. There are standard construc-
tions to translate LTL formulas to monitor automata. For reference, we quickly

8 R. Ehlers, B. Finkbeiner

recall the construction described in [1]. We start by building nondeterminis-
tic automata for both the specification and its negation. In these automata,
we prune states with empty language and then determinize with a powerset
construction. The product of the resulting deterministic finite-word automaton
represents a monitor with a doubly-exponential number of states in the length
of the original specification. As shown by Kupferman and Vardi [11], there is
a doubly-exponential lower bound and the construction is therefore essentially
optimal1.

2.2 Constructing monitors from deterministic parity automata

In preparation for our main construction in Section 3, which is based on parity
games, we now present an alternative monitor construction via deterministic
parity automata.

A deterministic parity automaton is a tuple A = (Q,Σ, δ, q0, c) with the
set of states Q, the alphabet Σ, the transition function δ : Q × Σ → Q, the
initial state q0 and the coloring function c : Q → IN. Given an infinite word
w = w0w1 . . ., w induces a run π = π0π1 . . . over A, where π0 = q0 and for every
i ∈ IN, πi+1 = δ(πi, wi). Likewise, a finite word w = w0w1 . . . wn induces a finite
run π = π0π1 . . . πn+1 in A where π0 = q0 and for every i ∈ {0, . . . , n}, we have
πi+1 = δ(πi, wi). We say that an infinite word w is in the language of A, denoted
by L(A), if and only if for the run π = π0π1 . . ., the highest number occurring
infinitely often in the sequence c(π0), c(π1), c(π2), . . . is even. For the scope of
this paper we require, without loss of generality, the transition function to be a
complete function. We refer to (Q,Σ, δ, q0) as the transition structure of A.

Given an LTL formula φ over a set of atomic propositions AP, we can trans-
late φ to a deterministic parity automaton A over the alphabet 2AP such that
for every infinite word w ∈ (2AP)ω, we have w |= φ if and only if w ∈ L(A). The
automaton A has 2O(2nn log n) states and 3(n+ 1)2n colors [18].

In order to build a monitor for an LTL formula from its equivalent determin-
istic parity automaton, we need to identify the states with universal or empty
language. Given an automaton A = (Q,Σ, δ, q0, c), for every q ∈ Q, we denote
by Aq the automaton (Q,Σ, δ, q, c), i.e., the same automaton but with a different
initial state. If for a q ∈ Q, L(Aq) = ∅, we say that q has an empty language, or
if L(Aq) = Σω, we say that q has universal language. To identify the states with
empty language, we check each of the automata Aq for q ∈ Q for emptiness (see
[5] for a suitable procedure). States with universal language are identified by
doing the same on a version of the automaton where 1 is added to every color,
which complements the language of each state. Based on the sets of states with
the empty and universal language, we identify bad and good prefixes:

1 Kupferman and Vardi prove a 22
Ω(

√
n)

lower bound, while the construction from [1]
leads to an automaton of size 22

n

, where n denotes the length of the LTL formula.
The difference is negligible, however, because we can carry out a precise finite-state
machine minimization [8] after the construction of the monitor.

Monitoring Realizability 9

Lemma 1. Let A = (Q, 2AP, δ, q0, c) be a deterministic parity automaton that
is obtained by a translation from an LTL formula ψ over the set of atomic
propositions AP, E ⊆ Q be the set of the states of A that have an empty language,
and U ⊆ Q be the set of states of A that have a universal language.

For every finite word w ∈ (2AP)∗, w induces a run in A that ends in a state
in E iff w is a bad prefix for ψ. Likewise, w induces a run in A that ends in a
state in U iff w is a good prefix for ψ.

With this lemma, we can now transform the deterministic parity automaton
into a monitor: we take the same set of states, label every state with an empty
parity automaton language with bad and every state with a universal parity
automaton language with good.

The monitor based on the parity automaton is slightly larger than the one de-
scribed in the previous subsection (2O(2nn log n) states compared to 22n

states)2.
The advantage of using the transition structure of the deterministic parity au-
tomaton is, however, that it allows us to recognize realizability, as we will see in
the following section.

3 Monitoring Realizability

As discussed in the introduction, a monitor that only detects bad and good
prefixes misses early indicators of failure, where the environment can enforce
a violation of the specification. Such a violation of realizability means that the
system under observation is incorrect, because there exists an input that will
cause a violation of the specification, but the situation is less severe than the
occurrence of a bad prefix, because the bad input might not actually occur during
the current run of the system.

3.1 Parity games

In a parity game, two players play for an infinite duration of time. The game
consists of a set of states, which are connected by labeled edges. Every state is
assigned to one of the two players, Player 0 and Player 1. The game is played
by moving a pebble along the edges of the game. Whenever the pebble is on
a state that belongs to the some player, this player gets to choose the action.
The pebble then moves according to the edge function to a state of the opposing
player. Every state has a color. A play is won by Player 0 if the highest color
visited infinitely often along the play is even.

Formally, a parity game is a tuple G = (V0, V1, Σ0, Σ1, E0, E1, vin, c). V =
V0 ⊎ V1 are the states, where the states in V0 belong to Player 0 and the states
in V1 belong to Player 1. Σ0 and Σ1 are the action sets, E0 : V0 × Σ0 → V1

and E1 : V1 × Σ1 → V0 are the edge functions of the two players. Additionally,
vin ∈ V is the initial state and c : V → IN is the coloring function.

2 We can apply precise finite-state machine minimization [8] after the construction to
obtain a monitor of equal size.

10 R. Ehlers, B. Finkbeiner

A decision sequence in G is a sequence ρ = ρ0
0ρ

1
0ρ

0
1ρ

1
1 . . . such that for all

i ∈ IN, ρ0
i ∈ Σ0 and ρ1

i ∈ Σ1. A decision sequence ρ induces an infinite play
π = π0

0π
1
0π

0
1π

1
1 . . . if π0

0 = v0 and for all i ∈ IN, p ∈ {0, 1}, Ep(πp
i , ρ

p
i) = π

1−p
i+p .

Given a play π = π0
0π

1
0π

0
1π

1
1 . . ., we say that π is winning for Player 0 if

max{c(v) | v ∈ V0, v ∈ inf(π0
0π

0
1 . . .)} is even, where the function inf maps a

sequence to the set of elements that appear infinitely often in the sequence. If a
play is not winning for Player 0, it is winning for Player 1.

Given some parity game G = (V0, V1, Σ0, Σ1, E0, E1, v0,F), a strategy for
Player 0 is a function f : (Σ0 × Σ1)∗ → Σ0. Likewise, a strategy for Player
1 is a function f : (Σ0 × Σ1)∗ × Σ0 → Σ1. In both cases, a strategy maps
prefix decision sequences to an action to be chosen next. A decision sequence
ρ = ρ0

0ρ
1
0ρ

0
1ρ

1
1 . . . is said to be in correspondence with f if for every i ∈ IN, we

have ρp
n = f(ρ0

0ρ
1
0 . . . ρ

1−p
n+p−1). A strategy is winning for Player p if all plays in

the game that are induced by some decision sequence that is in correspondence
to f are winning for Player p.

Parity games are determined, which means that there exists a winning strat-
egy for precisely one of the players. We call a state v ∈ V winning for player p
if the player has a winning strategy in the modified game where the initial state
has been changed to v.

Parity games and reactive systems. Parity games are a common model for
the interaction of a system with its environment. Player 0 represents the system,
Player 1 the environment. Player 0’s actions thus consist of the outputs, Player
1’s actions of the inputs.

We can translate a given LTL formula into a parity game such that there
is an execution tree that satisfies the formula along all its words if and only
if there exists a winning strategy for Player 0 from the initial state. Given
a winning strategy f , we can build a suitable execution tree 〈T, τ〉 by tak-
ing the decisions of the system player as the tree labels: T = (2API)∗ and
τ(t0 . . . tn) = f((τ(ǫ), t0)(τ(t0), t0t1)(τ(t0t1), t0t1t2) . . . (τ(t0 . . . tn−1), t0 . . . tn))
for every t0 . . . tn ∈ T .

Definition 1. Given a deterministic parity automaton A = (Q,Σ, δ, q0, c) with
Σ = 2API × 2APO , we build its induced parity game G = (Q,Q × 2APO , 2APO ,

2API , E0, E1, q0, c
′) with

∀v0 ∈ Q, x0 ∈ Σ0, E0(v0, x0) = (v0, x0);

∀v0 ∈ Q, x0 ∈ Σ0, x1 ∈ Σ1, E1((v0, x0), x1) = δ(v0, (x1, x0));

∀v0 ∈ Q, x0 ∈ Σ0, c
′(v0) = c(v0) and c′((v0, x0)) = 0.

Lemma 2. Given a deterministic parity automaton A = (Q,Σ, δ, q0, c) with
Σ = 2API × 2APO , there exists a winning strategy for the system player from the
initial state of the game induced by A iff there exists an execution tree for the
interface (API ,APO) for which all induced words are in L(A).

Monitoring Realizability 11

1

1

0

0

1 0

0 1 1 1

. .

Fig. 3. Example bobble tree over API = {i} and APO = {o}. The tree branches
according to 2API , where the left children correspond to i = 0 and the right children
correspond to i = 1. The tree nodes are labelled by the value of o. The tree has the split
word {i, o}{o}∅ and describes the past behaviour of a reactive system with interface
I = (API , APO) after having read {i}∅∅ from its initial state. The tree branches
according to all possible inputs from the split node onwards.

3.2 Recognizing realizability

We now formalize the situations in which the monitor should report realizable
and unrealizable. We call prefixes that lead to a realizable situation winning
and prefixes that lead to an unrealizable situation losing, corresponding to the
intuition that, in a realizable situation, Player 0 has a winning strategy, and in
an unrealizable situation, all strategies of Player 0 lose. The formal definition is
based on the concept of bobble trees, which are a special case of execution trees:
Bobble trees combine the representation of the past of an execution, which is a
prefix trace, with the representation of the future, which is a full tree.

A bobble tree 〈T, τ〉 has a split node t = t0 . . . tn ∈ T such that for every
node t ∈ T either t is a prefix of t, or t is a prefix of t and furthermore tt′ ∈
T for every t′ ∈ 2API . Thus, the tree has a single unique path to the split
node t and is full only from that point onwards. We call the prefix word w =
(τ(ǫ), t0)(τ(t0), t1) . . . (τ(t0 . . . tn−1), tn) the split word of 〈T, τ〉. Figure 3 shows
an example of a bobble tree.

Definition 2. Let I = (API ,APO) be an interface and L ⊆ (2API × 2APO)ω be
a language. We say that some prefix word w = w0 . . . wn ∈ (2API × 2APO)∗ is
a winning prefix (for L) if there exists some bobble tree with split word w that
satisfies L. Likewise, we say that some prefix word w = w0 . . . wn ∈ (2API ×
2APO)∗ is a losing prefix if all bobble trees with split word w do not satisfy L.

It is easy to see that bad prefixes are special cases of losing prefixes, and dually,
good prefixes are special cases of winning prefixes. The following theorem forms
the basis of our approach for monitoring for winning and losing prefixes:

Theorem 1. Let A = (Q,Σ, δ, q0, c) be a deterministic parity automaton with
Σ = 2API × 2APO and G be the corresponding parity game. For every prefix
word w = w0 . . . wn ∈ Σ∗ with its associated path π = π0 . . . πn+1 in A, w is a
winning/losing prefix for L(A) iff πn+1 is a state in G that is winning/losing for
Player 0, respectively.

12 R. Ehlers, B. Finkbeiner

Proof. Assume that w is a winning prefix. This is equivalent to the fact that
there exists a tree 〈T, τ〉 where there is no prefix word other than w of length |w|
and from the node w|I = (w0 ∩API)(w1 ∩API) . . . (wn ∩API) onwards, the tree
is full and all of its paths are in the language of A. This is the case if and only if,
from πn+1 onwards, all words in the the sub-tree from node w|I are accepted by
Aπn+1 . By the definition of G, this in turn is equivalent to πn+1 being winning
for Player 0. The argument for losing prefixes is dual. ⊓⊔

We have thus connected the monitoring problem for reactive systems to parity
game solving. Since parity games are determined (i.e., every state is winning for
precisely one of the two players), we directly obtain as a corollary:

Corollary 1. Let A = (Q,Σ, δ, q0, c) be a deterministic parity automaton with
Σ = 2API × 2APO . Every finite word w ∈ Σ∗ is either a winning or a losing
prefix.

A monitor can therefore only encounter the following four situations: fulfilled
if the prefix is good, realizable if the prefix is winning but not good, unrealizable
if the prefix is losing but not bad, and violation if the prefix is bad.

We construct the monitor by identifying which states in the deterministic
parity automaton are winning for Player 0 in the respective game, and combine
the information with the information about states in the automaton witnessing
good and bad prefixes. The monitor has the same transition structure as the
parity automaton. In terms of complexity, we obtain the following:

Theorem 2. Let I = (API ,APO) be an interface and ψ be an LTL formula
over API ⊎ APO. Building a finite-state machine that distinguishes between bad
(and losing), losing, winning and good (and winning) prefixes is 2EXPTIME-
complete.

Proof. For the lower bound, we note that the 2EXPTIME-complete [15] problem
of checking the realizability of LTL formulas is a special case: If we synthesize
a monitor, we can easily check for the realizability of a specification by testing
whether the initial state of the monitor machine is labeled by good or winning.

For the upper bound, we start by building an automaton A with 2O(2nn log n)

states and 3(n + 1)2n colors [18] that is equivalent to ψ, where n is the length
of ψ. Dividing the set of states in the corresponding game into the winning ones
and the losing ones can be done in time 2|API |+|APO|mO(d) [9], where m is the
number of states in the game (i.e., m = (2|APO | + 1) · 2O(2nn log n)) and d is the
number of colors in the game (i.e., d = 3(n + 1)2n). Combined with the effort
to identify the monitor states that represent good and bad prefixes, we obtain a
doubly-exponential time bound for this procedure. ⊓⊔

4 Finitary Winning And Losing Prefixes

We now add a further refinement to the classification of monitoring situations: we
distinguish situations in which the system or environment can enforce fulfillment

Monitoring Realizability 13

or violation, respectively, in finite time. The extended classification provides
helpful information about the urgency of the problem behind the unrealizable
status. Suppose, for example, that the monitor of a flight control system informs
an airplane pilot that the environment of the control system can force a viola-
tion of the specification in finite time. Since a violation of the specification is
imminent, the pilot might take drastic action in such a case, such as perform an
emergency landing. If, on the other hand, the environment needs infinite time to
enforce a violation, there is much more time for diagnosis and decision. It may
well be a better idea to continue the flight and report the system malfunction
(or incorrect specification) after the regular landing.

In this section, we define finitary winning and finitary losing prefixes and
show how to adapt the monitor construction from the previous section to also
detect these. Using this addition, our monitors for reactive systems now have six
monitoring conditions, going from worst case to best case as follows:

1. violation: the prefix is bad;
2. unrealizable with finite time: the prefix is finitary losing but not bad;
3. unrealizable with infinite time: the prefix is losing but not finitary losing;
4. realizable with infinite time: the prefix is winning but not finitary winning;
5. realizable with finite time: the prefix is finitary winning but not good; and
6. fulfilled: the prefix is good.

We begin by formalizing the definition of finitary losing and winning prefixes.

Definition 3. Let A = (Q,Σ, δ, q0, c) be a deterministic parity automaton with
Σ = 2API ×2APO . We say that some prefix word w = w0 . . . wn ∈ (2API ×2APO)∗

is a finitary winning prefix if there exists some bobble tree 〈T, τ〉 with split word
w such that every infinite word in 〈T, τ〉 has a good prefix word. Likewise, we
say that some prefix word w = w0 . . . wn ∈ (2API × 2APO)∗ is a finitary losing
prefix if for all bobble trees 〈T, τ〉 with split word w, there exists an infinite word
in 〈T, τ〉 that has a bad prefix word.

The following lemma characterizes the finitary winning and losing prefixes in
terms of the parity game, which allows us to base the monitors for such prefixes
on the framework described in the previous sections.

Lemma 3. Let A = (Q,Σ, δ, q0, c) be a deterministic parity automaton with
Σ = 2API × 2APO , E ⊆ Q be the states of A that have an empty language,
U ⊆ Q be the set of states of A that have a universal language and G be the
game corresponding to A.

– For every prefix word w = w0 . . . wn ∈ Σ∗, w is a finitary winning prefix
iff for the corresponding prefix run π = π0 . . . πn+1, Player 0 has a strategy
from state πn+1 to eventually visit U .

– For every prefix word w = w0 . . . wn ∈ Σ∗, w is a finitary losing prefix iff for
the corresponding prefix run π = π0 . . . πn+1, Player 1 has a strategy from
state πn+1 to eventually visit E.

14 R. Ehlers, B. Finkbeiner

As a consequence, we can again use the transition structure of the deter-
ministic parity automaton for our monitor. The only addition to the previous
monitor construction is that we need to identify the states in the game which
allow Player 0 and Player 1 to force the play into one of the states whose cor-
responding state in the parity automaton has a universal or empty language,
respectively. For this purpose, we apply a standard attractor [12] construction
on the game graph. To compute the finitary winning states, we initialize the
attractor with the states U whose language is universal and then repeatedly add
states owned by Player 0 that have an outgoing edge into the attractor, and
states owned by Player 1 where all outgoing edges lead into the attractor. The
fixpoint of this construction contains exactly those states where Player 0 can
force the game into U in a finite number of states. Analogously, we compute the
finitary losing states with an attractor that is initialized with the states E whose
language is empty, and where we repeatedly add states owned by Player 1 with
an edge to the attractor and states owned by Player 0 where all edges lead to
the attractor. The computation of the attractor sets takes linear time in the size
of the game [12]. We obtain as a corollary:

Corollary 2. Let I = (API ,APO) be an interface and ψ be an LTL for-
mula over API ⊎ APO. Building a finite-state machine that distinguishes be-
tween bad, finitary losing, losing, winning, finitary winning, and good prefixes is
2EXPTIME-complete.

5 Conclusion

We have presented a new multi-valued monitoring approach for linear-time tem-
poral logic that classifies trace prefixes not only according to the correctness
of the continuations, but also according to the strategic power available to the
system and its environment in order to avoid or enforce a violation. The game-
based approach has several advantages over the classic approaches: the game-
based analysis detects errors earlier, it detects errors that are missed by purely
trace-based approaches, and it can indicate the urgency with which a violation
is to be expected.

Our constructions are optimal in the complexity-theoretic sense. A potential
drawback of our approach is that we construct a deterministic automaton. Other
monitoring techniques construct nondeterministic or universal automata, which
are, in theory, exponentially more compact. The determinization is then often
done symbolically, for example in hardware using individual flip-flops for the
states of the nondeterministic or universal automaton (cf. [6]).

However, experiments with state-of-the-art LTL-to-automata translators
have shown that nondeterministic automata are not necessarily smaller than
deterministic automata. For many practical specifications, the deterministic au-
tomaton is in fact smaller than the nondeterministic automaton originally pro-
duced by the translator [10, 4]. Constructing deterministic automata and apply-
ing an efficient symbolic encoder [17] may thus even lead to smaller, faster and
more memory-efficient monitors.

Monitoring Realizability 15

References

1. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology 20(4) (2011)

2. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies.
Trans. AMS (138) (1969)

3. d’Amorim, M., Rosu, G.: Efficient monitoring of ω-languages. In Etessami, K.,
Rajamani, S.K., eds.: CAV. Volume 3576 of LNCS., Springer (2005) 364–378

4. Ehlers, R.: Minimising deterministic Büchi automata precisely using SAT solving.
In Strichman, O., Szeider, S., eds.: SAT. Volume 6175 of LNCS., Springer (2010)
326–332

5. Ehlers, R.: Short witnesses and accepting lassos in ω-automata. In Dediu, A.H.,
Fernau, H., Mart́ın-Vide, C., eds.: LATA. Volume 6031 of LNCS., Springer (2010)
261–272

6. Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded and unbounded
future. In Bensalem, S., Peled, D., eds.: RV. Volume 5779 of LNCS., Springer
(2009) 60–75

7. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata.
Formal Methods in System Design 24(2) (2004) 101–127

8. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automa-
ton. In Kohavi, Z., ed.: The Theory of Machines and Computations, Academic
Press (1971) 189–196

9. Jurdzinski, M.: Small progress measures for solving parity games. In Reichel, H.,
Tison, S., eds.: STACS. Volume 1770 of LNCS., Springer (2000) 290–301

10. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theor. Comput. Sci. 363(2) (2006) 182–195

11. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3) (2001) 291–314

12. Küsters, R.: Memoryless determinacy of parity games. In Grädel, E., Thomas, W.,
Wilke, T., eds.: Automata, Logics, and Infinite Games. Volume 2500 of LNCS.,
Springer (2001) 95–106

13. Müller, S.M., Paul, W.J.: Computer architecture: complexity and correctness.
Springer (2000)

14. Pnueli, A.: The temporal logic of programs. In: FOCS, IEEE (1977) 46–57
15. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In

Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D., eds.: ICALP. Volume 372 of
LNCS., Springer (1989) 652–671

16. Pnueli, A., Zaks, A., Zuck, L.D.: Monitoring interfaces for faults. Electr. Notes
Theor. Comput. Sci. 144(4) (2006) 73–89

17. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj,
H., Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS: A system for
sequential circuit synthesis. Technical Report UCB/ERL M92/41, EECS Depart-
ment, University of California, Berkeley (1992)

18. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In Flum, J., Grädel,
E., Wilke, T., eds.: Logic and Automata: History and Perspectives. Number 2 in
Texts in Logic and Games. Amsterdam University Press (2007) 629–736

