
Minimising Deterministic Büchi Automata
Precisely using SAT Solving?

Rüdiger Ehlers

Reactive Systems Group
Saarland University, Germany

Abstract. We show how deterministic Büchi automata can be fully
minimised by reduction to the satisfiability (SAT) problem, yielding the
first automated method for this task. Size reduction of such ω-automata
is an important step in probabilistic model checking as well as synthesis
of finite-state systems. Our experiments demonstrate that state-of-the-
art SAT solvers are capable of solving the resulting satisfiability problem
instances quickly, making the approach presented valuable in practice.

1 Introduction

The success of techniques for formal verification is closely connected to advances
in the efficient solution of the satisfiability (SAT ) problem. In the area of bounded
model checking [4], it has been shown that checking whether a given system has a
bounded-length witness for erroneous behaviour can efficiently and effectively be
performed by reduction to the SAT problem. Likewise, in software verification,
approaches involving satisfiability modulo theory solvers [2] have emerged, which
rely on the underlying SAT techniques.

However, there are many areas in formal verification that do not benefit
from advances in SAT solving yet. Taking for example probabilistic model check-
ing, where many of its variants are PSPACE-hard or require computing some
quantitative result [1], it is by no means obvious how the success of modern
SAT techniques can be transferred to this area. In this paper, we present some
progress towards closing this gap by reporting how SAT solving can be used for
the full minimisation of deterministic automata over infinite words, which arise
in intermediate steps of many formal methods.

One particular application of this automaton type is the verification of Mar-
kov decision processes against properties stated in linear time temporal logic
(LTL) [1]. Here, the classical model checking procedure requires converting the
LTL formula to a deterministic automaton. A similar situation arises in common
approaches to synthesis of finite state systems from LTL specifications [15].

? This work was supported by the German Research Foundation (DFG) within the
program “Performance Guarantees for Computer Systems” and the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS).



In both application areas, the minimisation of the number of states of the de-
terministic automata involved results in significant speed-ups of the actual model
checking and synthesis tasks. Current tools for computing automata equivalent
to LTL formulas use state space reduction techniques such as bisimulation quo-
tienting [8] that have been developed for the minimisation of non-deterministic
Büchi automata which are suitable for model checking non-deterministic sys-
tems. As the universality problem, and thus, the minimisation problem, of this
class of automata is PSPACE-hard, the techniques used are typically incomplete
and thus do not guarantee to find a minimal automaton. To the best of our
knowledge, special techniques for the minimisation of deterministic automata
have only been considered for weak deterministic automata [13], which however
cannot even represent basic liveness properties.

In this paper, we lift the applicability of (complete) automaton minimisa-
tion to a more expressive class of deterministic automata. For conciseness, we
restrict ourselves to deterministic Büchi automata (DBA) here. While DBA are
not expressive enough to represent all LTL specifications (and are strictly less
expressive than for example deterministic parity automata), they can represent
most properties that appear in hardware specifications [6] and it is assured that
in these cases, the smallest DBA is not larger than the smallest deterministic
parity, Rabin or Streett automaton for the given property [12].

In both application areas mentioned above, the specification is usually a
Boolean combination of a set of individual properties, which allows the precise
minimisation of the specification parts representable as DBA with our technique
before the automaton for the overall specification is composed. Additionally,
some modern approaches for fast synthesis from LTL properties achieve a re-
markable speedup by even requiring the specification parts to be representable
and given as DBAs (in a certain encoding) [14].

In the following, we show that the problem of deciding whether there exists
a smaller deterministic Büchi automaton for some given such automaton is con-
tained in NP and can efficiently be reduced to the SAT problem. We evaluate
whether currently available SAT solvers are capable of dealing with such problem
instances. By succesively building and solving the resulting SAT instances, the
minimal automaton is found. Our experiments suggest that for practical appli-
cations, the current state of the art in SAT solving is sufficient for the successful
usage of the this minimisation technique.

2 Preliminaries

A deterministic Büchi automaton (DBA) is a 5-tuple A = (Q,Σ, δ, q0, F ) with a
finite set of states Q, a finite alphabet Σ, a transition function δ : Q×Σ → Q,
an initial state q0 ∈ Q and a set of accepting states F ⊆ Q. For the scope of this
paper, we assume that δ is a total function.

We say that some infinite word w = w0w1 . . . ∈ Σω is accepted by A if the
run π induced by w on A is accepting. We define π = π0π1 . . . such that π0 = q0
and for all i ∈ IN0, δ(πi, wi) = πi+1. We say that π is accepting if and only if



{q ∈ Q | ∃∞j ∈ IN : πj = q} ∩ F 6= ∅, i.e., some accepting state occurs infinitely
often on π. We define the language L(A) of A to consist of all words in Σω that
induce accepting runs. We denote the size of an automaton by |Q|. A DBA is
minimal if there exists no other DBA with the same alphabet that has less states
and accepts the same language. We define the language of a state q ∈ Q to be
L(q) = L(Aq) for Aq = (Q,Σ, δ, q, F ).

For space reasons, we do not describe the logic LTL here, but rather refer to
[4, 1]. A word can either satisfy an LTL formula or not. We define the language
of an LTL formula to be the set of infinite words over Σ = 2AP satisfying the
formula over some set of atomic propositions AP. We call a DBA equivalent to
an LTL formula if their languages are the same.

3 Minimising deterministic Büchi automata

Minimising deterministic Büchi automata is different from minimising determi-
nistic automata over finite words: while for the latter, there exists a suitable
polynomial algorithm, which is based on merging states with the same language,
the same idea cannot be exploited for Büchi automata. The left part of Figure
1 shows a Büchi automaton over the alphabet Σ = 2{a,b} equivalent to the LTL
formula (GFa) ∧ (GFb). This DBA has four states, whereas the smallest Büchi
automata equivalent to this formula have only three states. One such DBA is de-
picted in the right part of Figure 1. It is by no means obvious how to restructure
the left automaton in order to obtain such a smaller one.

This example shows that we cannot only rely on language equivalence for
minimising deterministic Büchi automata. We thus propose a different approach
here. Assume that some n-state reference automaton A′ = (Q′, Σ, δ′, q′0, F

′) is
given. We use a SAT solver to consider all possible n−1-state candidate automata
A = (Q,Σ, δ, q0, F ) and encode the equivalence check of the languages of A and
A′ in clausal form. While such a check is PSPACE-complete for non-deterministic
Büchi automata, it can be performed in polynomial time for deterministic Büchi

q0 q1

q2q3

ab

ab ab
ab

ab

b

ab

a

b

ab
a

ab
q0 q1

q2

b a

a, a

a

b

Fig. 1. A non-minimal DBA (left) and a minimal DBA (right) equivalent to the LTL
formula (GFa) ∧ (GFb) over the atomic proposition set AP = {a, b}. Both DBA have a
total transition relation. Accepting states are doubly-circled.



automata and can also be efficiently encoded into a SAT instance. By repeat-
edly applying this reduction technique until the resulting SAT instance becomes
unsatisfiable, we obtain an automaton of minimal size.

For encoding the equivalence check, we use the observation that we can de-
duce from the product of A and A′ if the two deterministic Büchi automata have
the same language. More precisely, we build the graph G = 〈V,E〉 with the set
of vertices V = Q × Q′ and edges E = {((q1, q′1), (q2, q

′
2)) | ∃s ∈ Σ : δ(q1, s) =

q2∧ δ′(q′1, s) = q′2}. If there is some loop (v0, v
′
0)(v1, v

′
1) . . . (vk, v

′
k) in 〈V,E〉 with

(v0, v
′
0) being reachable from (q0, q

′
0) such that on it, accepting states are only

visited for A, but not for A′, i.e., {v0, . . . , vk}∩F 6= ∅ and {v′0, . . . , v′k}∩F ′ = ∅,
then there exists some w ∈ L(A) such that w /∈ L(A′), so A and A′ are inequiv-
alent. Dually, if {v0, . . . , vk}∩F = ∅ and {v′0, . . . , v′k}∩F ′ 6= ∅, then there exists
a word w /∈ L(A) such that w ∈ L(A′). If no such loops can be found, A and A′
are equivalent.

3.1 Encoding as a SAT problem

Using the observation stated above, we can build a SAT problem instance for
solving the DBA state reduction problem. For notational convenience, in the fol-
lowing, primed state variables always refer to states in the reference automaton,
whereas unprimed state variables refer to the candidate automaton. We use the
following set of variables:

{〈q〉F | q ∈ Q} ∪ {〈q1, s, q2〉δ | q1, q2 ∈ Q, s ∈ Σ} ∪ {〈q, q′〉G | q ∈ Q, q′ ∈ Q′}
∪ {〈q1, q′1, q2, q′2〉X | q1, q2 ∈ Q, q′1, q′2 ∈ Q′, X ∈ {N,A}}

The SAT clauses are defined as follows:∧
q1∈Q,s∈Σ

∨
q2∈Q
〈q1, s, q2〉δ (1)

∧
∧

q1,q2∈Q,q′∈Q′,s∈Σ
〈q1, q′〉G ∧ 〈q1, s, q2〉δ ⇒ 〈q2, δ′(q′, s)〉G (2)

∧
∧

q1,q2,q3∈Q,q′1,q
′
2∈Q

′,s∈Σ,
δ′(q′2,s)/∈F

′,(q′1 6=δ(q
′
2,s))∨(q1 6=q3)

〈q1, q′1, q2, q′2〉N ∧ 〈q2, s, q3〉δ
⇒ 〈q1, q′1, q3, δ′(q′2, s)〉N

(3)

∧
∧

q1,q2∈Q,q′1,q
′
2∈Q

′,s∈Σ,
q′1 /∈F

′,q′1=δ(q
′
2,s))

〈q1, q′1, q2, q′2〉N ∧ 〈q2, s, q1〉δ ⇒ ¬〈q1〉F (4)

∧
∧

q1,q2,q3∈Q,q′1,q
′
2∈Q

′,s∈Σ,
q′1∈F

′,q′1 6=δ(q
′
2,s))∨q1 6=q3

〈q1, q′1, q2, q′2〉A ∧ 〈q2, s, q3〉δ ∧
¬〈q3〉F ⇒ 〈q1, q′1, q3, δ′(q′2, s)〉A

(5)

∧
∧

q1,q2∈Q,q′1,q
′
2∈Q

′,s∈Σ,
q′1∈F

′,q′1=δ(q
′
2,s))

〈q1, q′1, q2, q′2〉A ∧ 〈q2, s, q1〉δ ⇒ 〈q1〉F (6)



∧〈q0, q′0〉G ∧
∧

q∈Q,q′∈Q
(〈q, q′〉G ⇒ 〈q, q′, q, q′〉N ) ∧ (〈q, q′〉G ⇒ 〈q, q′, q, q′〉A) (7)

The variables 〈·〉F represent whether a state is accepting. The transition function
of the candidate automaton is defined in the variables 〈·〉δ. The clauses (1) make
sure that the transition function is total. For the vertices in G that are reachable
from (q0, q

′
0), the first part of (7) and (2) enforce that the respective variables in

〈·〉G are set to true. In particular, the first conjunct of (7) makes sure that (q0, q
′
0)

is defined as being reachable and (2) forces successors of reachable vertices in G
to be marked as being reachable as well.

If there is path from some reachable vertex (q1, q
′
1) ∈ V to some vertex

(q2, q
′
2) ∈ V in G such that no accepting state of A′ is visited along the path,

then 〈q1, q′1, q2, q′2〉N indicates this fact. This is made sure by (3) in conjunction
with (7). We use these path witness variables for detecting the loops in G that
are non-accepting for A′. The clauses (4) state that the states of A along such
loops then also have to be non-accepting.

Dually, 〈q1, q′1, q2, q′2〉A is set to true if there exists a path from some reachable
vertex (q1, q

′
1) ∈ V to some vertex (q2, q

′
2) ∈ V in G such that no accepting state

of A is visited in between. This is assured by the clauses (5) and (7). We add
the clauses (6) to make sure that such a path may not form a loop if one of its
A′-states is accepting.

Note that there are no clauses enforcing that not too many variables in 〈·〉G,
〈·〉δ, 〈·〉N or 〈·〉A are set to true. This is not necessary, as this only makes finding
a satisfying assignment harder, but never results in false-positives. If a variable
valuation satisfying all constraints has some state for which there is more than
one transition possible for some input symbol, then the encoding makes sure that
picking any of the possible successors always results in a correct DBA. Apart
from the clauses (1), all conjuncts are Horn clauses (if we negate all values of
〈·〉F ). While the generated instance is relatively large (of size O(|Q′|4)), the fact
that most clauses are of Horn type simplifies solving such SAT instances.

For speeding up the SAT solving process, symmetry breaking clauses [16] can
also be added. For simplicity, we only break symmetry partially in our experi-
mental evaluation. In particular, for Q = {q1, . . . , q|Q|} and Σ = {s1, . . . , s|Σ|},
we add the following conjuncts that encode some relaxed form of lexicographi-
cal minimality of the candidate automaton over the automata whose graphs are
isomorphic to the candidate solution:∧

1≤i<|Q|, i+1<j≤|Q|, (i−1)·|Q|+j+2≤k≤|Σ|

¬〈qi, sk, qj〉δ

4 Experimental evaluation1

We ran a prototype implementation of our technique on a couple of LTL formu-
las that are typical for model checking and synthesis. The upper part of Table

1 Details and a downloadable implementation of the approach can be found at
http://react.cs.uni-saarland.de/tools/dbaminimizer.



1 contains results for the 8 out of 12 LTL formulas stated in [7] that are repre-
sentable as DBAs. In the lower half of the table, we give results for some typical
synthesis specification parts and added some more complex formulas to allow
for a more meaningful evaluation of our approach. Note that in both cases, the
formulas occurring are mostly rather small, as in practice larger specifications
are usually split up such that their conjuncts can be translated separately and
composed to an overall automaton afterwards.

We used the tool ltl2dstar v.0.5.1 [10] in conjunction with ltl2ba v.1.1

[9] to obtain initial non-optimised deterministic Rabin automata equivalent to
the input formulas given in the first column of the table. By applying the al-
gorithm described in [11], we converted the deterministic Rabin automaton to
a deterministic Büchi automaton whenever this is possible (and aborted other-
wise). The ltl2dstar tool applies bisimulation quotienting, so the automata
obtained are already heuristically optimised.

The number of states of these automata is given in the second column of
Table 1. Columns four and five state the sizes of the reduction problems of
these initial DBAs. The reduction process is repeated until no further improve-
ments are possible. The resulting number of states in the minimised DBAs is
shown in the third column. Finally, the total computation time of the SAT solver
picosat v.913 [3] observed on a computer with an Intel Core 2 Duo 1.86GHz
processor for all reduction steps is given in the last column. We restricted the
SAT solving time to one hour. Exceeding of this time bound is denoted by a star.
Consequently, in such cases, the resulting DBA is not guaranteed to be minimal.
The computation times for obtaining the initial DBA are negligible (< 0.05 sec-
onds in all cases) and thus not added to the total time value. Furthermore, the
computation of the SAT instances from the automata has also not been taken
into account as most time was spent on writing the SAT instance to disk here,
which can be circumvented by a future tighter integration with the SAT solver.

The table shows that except for one instance, the minimisation problem
was always solved quickly. Thus, our technique is well-suited for being used
as an optimisation step for the applications discussed in this paper. As the
problem definition inherently induces a lot of symmetries in the SAT instance,
we conjecture that future advancements in dynamic symmetry breaking [16] will
allow tackling even bigger problem instances.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories.

[5] 825–885
3. Biere, A.: Picosat essentials. JSAT 4(2-4) (2008) 75–97
4. Biere, A.: Bounded Model Checking. [5] 457–474
5. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.

IOS Press (2009)
6. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:

Specify, compile, run: Hardware from PSL. Electr. Notes Theor. Comput. Sci.
190(4) (2007) 3–16



Table 1. Experimental results of our DBA minimisation technique.

LTL specification
# States First instance Total
From To # Vars # Clauses time

F(q ∧ X(pUr)) 3 3 94 697 0.01 s

pUqUr ∨ qUrUp ∨ rUpUq 3 3 112 699 0.01 s

F(p ∧ X(q ∧ XFr)) 4 4 279 3785 0.01 s

G(p → qUr) 5 3 852 13508 0.03 s

pU(q ∧ X(rUs)) 5 5 780 26972 0.04 s

F(p ∧ XF(q ∧ XF(r ∧ XFs))) 5 5 780 26972 0.01 s

pU(q ∧ X(r ∧ F(s ∧ XF(u 9 9 14752 5383278 30.36 s
∧XF(v ∧ XFw)))))

GFp ∧ GFq ∧ GFr ∧ GFs ∧ GFu 14 6 51467 13856026 63.03 s

GFa ∨ GFb ∨ GFc 2 2 19 60 0.01 s

G(a → Fb) 4 2 339 1907 0.03 s

G(aUbU¬aU¬b) 4 2 339 1907 0.03 s

(Ga → Fb) ∧ (G¬a → F¬b) 4 4 291 1904 0.01 s

G¬c ∧ G(a → Fb) ∧ G(b → Fc) 5 2 852 13508 0.04 s

G(a → Fb) ∧ Gc 5 3 852 13508 0.03 s

GF(a → XXXb) 7 2 3720 43457 0.08 s

G(a → Fb) ∧ G(¬a → F¬b) 8 4 5635 89511 0.14 s

GF(a ↔ XXb) 9 6 8760 168358 1.57 s

G(a → Fb) ∧ G(b → Fc) 10 5 14247 589925 0.98 s

G(a → XXXb) 10 9 16623 295076 3.71 s

G(a → Fb) ∧ G(c → Fd) 15 6 72660 9926065 23.96 s

GF(a ↔ XXXb) 17 15 116912 4752970 3617.3 s∗

7. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In Palamidessi, C.,
ed.: CONCUR. Volume 1877 of LNCS., Springer (2000) 153–167

8. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput. 34(5) (2005)
1159–1175

9. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In Berry, G.,
Comon, H., Finkel, A., eds.: CAV. Volume 2102 of LNCS. (2001) 53–65

10. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theor. Comput. Sci. 363(2) (2006) 182–195

11. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic w automata vis-a-vis de-
terministic buchi automata. In Du, D.Z., Zhang, X.S., eds.: ISAAC. Volume 834
of LNCS., Springer (1994) 378–386

12. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for omega-regular au-
tomata. Int. J. Found. Comput. Sci. 17(4) (2006) 869–884

13. Löding, C.: Efficient minimization of deterministic weak omega-automata. Inf.
Process. Lett. 79(3) (2001) 105–109

14. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In Emerson,
E.A., Namjoshi, K.S., eds.: VMCAI, Springer (2006) 364–380

15. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL. (1989)
179–190

16. Sakallah, K.A.: Symmetry and Satisfiability. [5] 289–338



A Appendix

An example of an automatically minimised automaton: The following
example shows that a SAT-based approach to the full minimisation of determi-
nistic Büchi automata can reduce the size of the automata significantly. Taking
the LTL formula ψ = GF(a → XXXb), the ltl2dstar tool computes an equiv-
alent deterministic Rabin automaton with 7 states from it, which can easily be
converted (automatically) to an equivalent DBA. The resulting DBA is in fact
unnecessarily large, as the only way not to satisfy ψ on a word over the alphabet
2{a,b} is to have a word ending with {a}ω. Consequently, there is an equivalent
2-state DBA which is found by our implementation of the technique described
in this paper and which we depict in Figure 2.

q0 q1
a, a

ab, a

ab

Fig. 2. A minimal DBA equivalent to the LTL formula ψ = GF(a → XXXb) over the
atomic proposition set AP = {a, b}. Accepting states are doubly-circled.

About the title of the paper: We used the word “precisely” in the title
of the paper because some authors of other papers dealing with automaton
size reduction have used the term “minimisation” for techniques that do not
necessarily yield automata of minimal size (but rather use some rules to make
them smaller in many cases). The word “precisely” was thus added to avoid
confusion in this context.

Total transition functions in DBA: In this paper, we only considered de-
terministic Büchi automata with a total transition function. Whether this re-
striction is necessary depends on the application the DBA is supposed to be
used in. For example, in the GR(1) synthesis approach [14], this is a necessary
restriction whereas in probabilistic model checking, it is sometimes not neces-
sary. In all cases, the minimisation of DBAs with a total transition relation is
the same as for those with non-total transition relation: if the totality of the
transition relation is not needed, the minimal automaton for the total-relation
case can be made a minimal automaton for the non-total case by removing the
(possibly existing) rejecting absorbing state from the automaton and removing
all transitions to it.

NP-completeness of the problem considered: At the time of publica-
tion of this paper, whether the minimisation of deterministic Büchi automata is
NP-complete was unknown. Recently, the NP-completeness has been proven by
Schewe [19].



The applicability of our techniques to synthesising finite state sys-
tems: In the main part of the paper, we state that in generalized reactivity(1)
synthesis (the more modern synthesis approach mentioned), all properties have
to be representable and stated as DBA. While the original paper about this
approach [14] does not state this fact, it has been clarified, for example, in [17].

The automata produced by LTL2DSTAR: The tool LTL2DSTAR does
not necessarily produce Büchi automata whenever possible. Instead, it outputs
automata having the more general Rabin or parity acceptance condition types
(see, e.g., [18] for an overview). However, it has been shown [11, 12] that if there
exists an equivalent DBA, then there is one that has the same set of states and
the same transition relation. Thus, we only need to check if there is a suitable
set of accepting states to obtain a DBA with the same language. This is however
a simple task. We only need to find all non-accepting loops in the automaton,
make the states on it non-accepting and mark the remaining states as being
accepting. The result is then checked for equivalence with the original Rabin or
parity automaton. If this is not the case, there exists no DBA for the specification
given. This whole operation can be done time polynomial in the automaton size.

Why we used Picosat & only basic symmetry breaking: We tried a
couple of SAT solvers for the experimental evaluation (Minisat, Picosat, and
Precosat, the winner of 2009 SAT competition’s application track) but found
that Precosat usually performed worse on our examples than Picosat and Minisat
spends too much time on preprocessing the instance such that it is usually slower
than Picosat.

We also tried if Minisat or Precosat were able to solve the one SAT instance
that remained unsolved in our experimental evaluation. Precosat was the only
solver that was able to solve it in a reasonable amount of time (about 5 hours)
and was only able to do so when we applied some more exhaustive symmetry
breaking.

Nevertheless, five hours is currently too much for the formal methods com-
munity to call a technique as presented in this paper applicable. Thus, we left
out results for the solvers other than Picosat and also didn’t go into depth on
more exhaustive symmetry breaking in the paper. As the results of Picosat are
already good enough to show the main claim of this paper, namely that the
Büchi automaton minimisation technique is applicable with today’s solvers, we
found this to be a reasonable choice.

More detailed experimental results: For completeness, we state the whole
experimental results here. Due to the large number of instances, we splitted the
overview into Table 2 and Table 3. Some of the instances were solved too quickly
for the GNU/Linux time utility to be able to measure the computation time.
For the table in the main part of the paper, we thus assumed a computation time
of 0.01s in such cases. The two tables also contain some formulas we left out in
the main part of the paper due to space restrictions. In the second column, it is
always the number of states of the reference automaton that is given. Thus, for



example, a row with 5 states corresponds to a size reduction problem from 5 to
4 states.

References

17. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications using
simple counterstrategies. In: FMCAD, IEEE (2009) 152–159

18. Grädel, E., Thomas, W., Wilke, T., eds.: Automata, Logics, and Infinite Games:
A Guide to Current Research. Volume 2500 of LNCS. Springer (2002)

19. Schewe, S.: Minimisation of deterministic parity and Büchi automata and relative
minimisation of deterministic finite automata, 2010; arXiv/CoRR:1007.1333.



LTL specification # states
Picosat

# Vars # Clauses Time (s)

XXa 5 856 3408 0.00

GF(a → XXXb) 7 3720 43457 0.03
6 1935 18682 0.01
5 888 6776 0.00
4 339 1907 0.00
3 96 355 0.00
2 15 32 0.00

F(p ∧ XF(q ∧ XF(r ∧ XFs))) 5 780 26972 0.01

F(q ∧ X(pUr)) 3 94 697 0.00

F(p ∧ X(q ∧ XFr)) 4 279 3785 0.00

pU(q ∧ X(rUs)) 5 780 26972 0.04

G(a → Fb) ∧ G(c → Fd) 15 72660 9926065 8.62
14 51311 6928183 5.54
13 43032 4702964 3.85
12 27423 3090265 2.51
11 21080 1953967 1.40
10 13995 1179668 1.00
9 9528 673030 0.58
8 5327 357709 0.24
7 3270 173543 0.13
6 1695 74527 0.09

GFa ∧ GFb 5 688 6768 0.00
4 291 1904 0.00
3 78 353 0.00

GFa ∨ GFb ∨ GFc 2 19 60 0.00

GFa 2 13 18 0.00

aUbUcUd 5 780 26972 0.01

G(a → Fb) ∧ Gc 5 852 13508 0.01
4 327 3788 0.00
3 94 697 0.00

(Ga → Fb) ∧ (G¬a → F¬b) 4 291 1904 0.01

pU(q ∧ X(r ∧ F(s ∧ XF(u 9 14752 5383278 30.36
∧XF(v ∧ XFw)))))

G(a → Fb) ∧ G(b → Fc) 10 14247 589925 0.45
9 9016 336582 0.27
8 5831 178915 0.14
7 3276 86813 0.06
6 1675 37292 0.04
5 752 13504 0.02

G(a → Fb) ∧ G(¬a → F¬b) 8 5635 89511 0.07
7 3426 43451 0.04
6 1575 18672 0.01
5 788 6772 0.00
4 291 1904 0.00

Table 2. Overview table of the complete results, part one. For each instance, we state
the sizes of the SAT instances for each reduction step along with the SAT solving times.



LTL specification # states
Picosat

# Vars # Clauses Time (s)

GFp ∧ GFq ∧ GFr ∧ GFs ∧ GFu 14 51467 13856026 9.81
13 35196 9405560 8.86
12 24607 6180264 4.66
11 19050 3907697 2.71
10 14391 2359163 1.88
9 9256 1345910 0.94
8 5663 715318 0.58
7 3552 347009 0.34
6 1915 149002 33.25

GF(a ↔ XXXb) 17 116912 4752970 7.02
16 85635 3470897 10.28
15 60858 2481775 timeout

G(p → qUr) 5 852 13508 0.01
4 327 3788 0.00
3 94 697 0.00

GF(a ↔ XXb) 9 8760 168358 0.17
8 5187 89504 0.15
7 2544 43433 0.07
6 1395 18667 1.18

G¬c ∧ G(a → Fb) ∧ G(b → Fc) 5 852 13508 0.01
4 327 3788 0.00
3 112 699 0.00
2 19 60 0.00

G(a → XXXb) 10 16623 295076 0.29
9 10704 168382 3.42

G(a → Fb) 4 339 1907 0.00
3 96 355 0.00
2 15 32 0.00

G(aUbU¬aU¬b) 4 339 1907 0.00
3 96 355 0.00
2 15 32 0.00

pUqUr ∨ qUrUp ∨ rUpUq 3 112 699 0.01
Table 3. Overview table of the complete results, part two. For each instance, we state
the sizes of the SAT instances for each reduction step along with the SAT solving times.


