
On the Virtue of Patience: Minimizing Büchi
Automata?

Rüdiger Ehlers and Bernd Finkbeiner

Reactive Systems Group
Saarland University

{ehlers,finkbeiner}@react.cs.uni-saarland.de

Abstract. Explicit-state model checkers like SPIN, which verify sys-
tems against properties stated in linear-time temporal logic (LTL), rely
on efficient LTL-to-Büchi translators. A difficult design decision in such
constructions is to trade time spent on minimizing the Büchi automa-
ton versus time spent on model checking against an unnecessarily large
automaton. Standard reduction methods like simulation quotienting are
fast but often miss optimization opportunities. We propose a new tech-
nique that achieves significant further reductions when more time can be
invested in the minimization of the automaton. The additional effort is
often justified, for example, when the properties are known in advance,
or when the same property is used in multiple model checking runs. We
use a modified SAT solver to perform bounded language inclusion checks
on partial solutions. SAT solving allows us to prune large parts of the
search space for smaller automata already in the early solving stages. The
bound allows us to fine-tune the algorithm to run in limited time. Our
experimental results show that, on standard LTL-to-Büchi benchmarks,
our prototype implementation achieves a significant further size reduc-
tion on automata obtained by the best currently available LTL-to-Büchi
translators.

1 Introduction

Minimizing Büchi automata is a fundamental task in automatic verification.
Explicit-state model checkers like SPIN [13] translate the specification, given as
a formula in linear-time temporal logic (LTL), into a Büchi automaton that cor-
responds to the negation of the formula. This automaton is composed with the
system-under-verification, and the resulting product is checked for counterex-
ample traces. Since the specification is usually much smaller than the system,
reducing the automaton generated from the specification even by a small num-
ber of states can have a huge impact on the size of the product state space and,
hence, on the performance of the model checker.

? This work was supported by the German Research Foundation (DFG) within the
program “Performance Guarantees for Computer Systems” and the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS).

q0

q1 q2

q3

p ¬p

¬p p

p,¬p

p ¬p

(a) A

q′0

q′1 q′2

¬p p

p

¬p

p,¬p

p ¬p

(b) A′

Fig. 1. Two Büchi automata for the LTL formula (Fp) ∧ (F¬p). The 4-state automa-
ton A shown on the left was generated by a standard LTL-to-Büchi translator. The
equivalent 3-state automaton A′ shown on the right was obtained using our minimiza-
tion method.

Since minimizing Büchi automata is hard (it includes the universality prob-
lem as a special case, which is already PSPACE-hard), the optimization tech-
niques in the literature aim for a compromise between time spent on minimizing
the Büchi automaton versus time spent on model checking against an unneces-
sarily large automaton. In addition to simple local optimizations such as edge
label rewriting and the elimination of subautomata without accepting runs, the
standard approach is to merge states based on simulation and bisimulation re-
lations (cf. [8, 16, 12]). Simulation and bisimulation relations can be computed
in polynomial time. Optimizing automata by merging similar states is therefore
fast, but it often misses optimization opportunities. Consider, for example, the
automata shown in Figure 1, which correspond to the LTL formula Fp ∧ F¬p
over the singleton set {p} of atomic propositions. The 4-state automaton A on
the left was generated by a standard LTL-to-Büchi translator: q0 is the initial
state; q1 represents the case where a p has been seen, but not yet a ¬p, and,
analogously, q2 the case where a ¬p has been seen but not yet a p; q3 represents
the case where both obligations have been satisfied. Since none of the four states
simulates any other state, standard reduction techniques cannot optimize this
automaton any further. There exists, however, an equivalent automaton A′ with
just 3 states, shown on the right in Figure 1: an accepting run on a word that
contains both p and ¬p simply stays in the initial state q′0 until just before some
p,¬p or ¬p, p sequence occurs and then moves between the accepting states q′1
and q′2 according to the remaining suffix.

Given the complexity of the minimization problem, it seems unlikely that
one can improve over the standard reduction techniques without increasing the
computation time. However, investing additional time may well be justified. Con-
sidering that the specification is often written long before the system design is
complete, it is not unrealistic to assume that the optimization of the specifi-
cation automata can begin hours or even days before the first model checking

run. If such additional time is available, can it be used productively to obtain
smaller automata that might then, once the verification starts, be used over and
over again, when different systems (or, during debugging, multiple versions of
the same system) are checked against the same properties?

In this paper, we present a new optimization technique that uses a modified
SAT solver to search for a small automaton that accepts the same language
as a given reference automaton A+. For this purpose, we encode a candidate
automaton A with Boolean variables and check, after each decision made by the
solver, whether the current partial variable valuation can still be completed to
the representation of an automaton that is equivalent to A+. It is fairly simple to
ensure that the candidate automaton only accepts words that are in the language
of A+, because we can compute the complement A− of A+ (if the starting point
is an LTL formula, we simply run the LTL-to-Büchi translator on the negated
formula). Then, L(A) ⊆ L(A+) corresponds to L(A−) ∩ L(A) = ∅, which is
easy to check. The challenge, however, is to efficiently check L(A+) ⊆ L(A),
because here the complement would have to be recomputed for every candidate
automaton.

We introduce bounded language containment, an approximative version of
language containment, whose precision and computational cost can be fine-tuned
so that the check runs in limited time. Bounded language containment between
two Büchi automata A and A′ requires that there exists a constant b ∈ IN
such that for each accepting run π of A on some word there is a run π′ of
A′ on the same word such that the number of visits to accepting states in π
between two visits of accepting states in π′ is bounded by b. We can thus fine-
tune the precision of bounded language containment by choosing different values
for the bound: higher values result in greater precision, lower values in faster
computation. No matter how we choose the bound, however, bounded language
containment is always a sound approximation of language containment.

A SAT-based search for the smallest Büchi automaton that accepts the same
language as a given reference automaton is slower than applying standard op-
timization techniques directly on the reference automaton. On automata from
LTL-to-Büchi benchmarks [16, 8, 6], our prototype implementation often runs
for several hours. By comparison, it usually only takes seconds to compute some
reference automaton. However, the resulting size reduction is remarkable: even
for automata obtained by the best currently available LTL-to-Büchi translators,
spot [5] and ltl2ba [10], using various parameter settings on standard bench-
marks for LTL-to-Büchi translation, our method improves in 43 out of 94 cases
over the smallest automaton found by the LTL-to-Büchi tools, saving as many
as 22 out of 28 states in one benchmark.

The remainder of the paper is structured as follows. In the following section,
we review preliminaries on Büchi automata and SAT solving. In Section 3, we
present our new algorithm for checking language equivalence based on bounded
language containment. In Section 4, we integrate this algorithm into the SAT-
based search for a small automaton that accepts the same language as a given
reference automaton. Our experimental results are reported in Section 5. We

conclude the paper in Section 6 with a discussion of the benefits and limitations
of our approach in comparison to precise language containment and simulation-
based approaches.

2 Preliminaries

2.1 Büchi Automata

A Büchi automaton A = (Q,Σ, δ, q0, F) consists of a finite set of states Q, a
finite alphabet Σ, a transition relation δ ⊆ Q×Σ ×Q with a designated initial
state q0 ∈ Q, and a set of accepting states F ⊆ Q. We refer to the number of
states in an automaton as its size.

A word over an alphabet Σ is an infinite sequence w = w0w1 . . . ∈ Σω.
A run of A on an infinite word w = w0w1 . . . ∈ Σω is an infinite sequence
π = π0π1 . . . ∈ Qω of states where π0 = q0 and for all i ∈ IN0, (πi, wi, πi+1) ∈ δ.
A run π is accepting iff inf(π)∩F 6= ∅, where inf(π) denotes the set of states that
occur infinitely often in π. The automaton is without dead-ends if every finite
prefix of a run can be extended to an accepting run (possibly on a different input
word). A word w is accepted by A iff there exists an accepting run for it. We
denote the set of runs of A on w by R(A, w), and the set of accepting runs by
RF (A, w). For convenience, we extend the definition of R(A, w) to finite prefixes
w ∈ Σ∗ in the natural way. The set of accepted words is called the language L(A)
of the automaton. Two automata A,A′ are equivalent if L(A) = L(A′).

An important application of Büchi automata is model checking for specifica-
tions given in linear-time temporal logic (LTL). The models of an LTL formula
are infinite words over the alphabet Σ = 2AP, where AP is a fixed set of atomic
propositions. In analogy to Büchi automata, we call the set of words that sat-
isfy an LTL formula ψ the language L(ψ) of ψ. Model checkers like SPIN use
translation algorithms that construct for a given LTL formula ψ a Büchi au-
tomaton such that L(ψ) = L(A). Several such algorithms are described in the
literature (cf. [16, 8, 10, 11]). For a comprehensive introduction to LTL and LTL
model checking we refer the reader to standard textbooks on computer-aided
verification (cf. [1]).

2.2 SAT Solving

Satisfiability (SAT) is the problem of determining if the variables of a given
Boolean formula can be assigned in such a way that the formula evaluates to
true. A SAT instance is given as a set of Boolean variables V and a set of clauses
C, all of which are of the form l1 ∨ . . .∨ ln for some set of literals l1, . . . , ln with
li ∈ V ∪ {¬v : v ∈ V } for all 1 ≤ i ≤ n. An assignment of the variables to the
values in B = {false, true} is called valid for 〈V,C〉 if it leads to the satisfaction
of all clauses.

The algorithm presented in this paper is based on search-based SAT solving.
Search-based SAT solvers maintain a partial valuation V → {false, true,⊥}

of the variables by assigning to every variable either a truth value in B or the
value ⊥, indicating that no truth value has been decided for the variable yet. We
call a partial evaluation z′ ∈ (V → {false, true,⊥}) an extension of a partial
valuation z ∈ (V → {false, true,⊥}) if for all v ∈ V with z(v) ∈ B, we have
z′(v) = z(v). A partial valuation z′ is a completion of some partial valuation z
if z′ is an extension of z and every extension of z′ is identical to z′.

In every step of the computation, the solver checks if the current decisions
already make some clause unsatisfied, i.e., if a partial valuation has been reached
where no completion of satisfies the clause. In this case, we say that a conflict has
occurred and the solver back-tracks some of the decisions already made. Then,
modern solvers analyze the cause of the conflict and store a learned clause that
prevents the decisions that lead to the conflict from being made again.

SAT solving has been extended with non-clausal constraints, as they occur,
for example, in satisfiability modulo theory solving [2]. The SAT instance is now
given as a tuple 〈V,C,N〉, where the set of variables V and the set of clauses C
is defined as before. Additionally, the set of non-clausal constraints N ⊆ (V →
{false, true,⊥}) → B consists of functions that map partial valuations to a
truth value indicating whether the partial valuation has a completion satisfying
the constraint. Consequently, for a non-clausal constraint f ∈ N and two partial
valuations z, z′, where z′ is an extension of z, f(z′) = true implies f(z) =
true. For SAT with non-clausal constraints, the solver checks, after each decision
and for each non-clausal and clausal constraint, whether the current partial
valuation can be extended in such a way that the constraint is satisfied. For
more background on SAT solving, we refer the interested reader to a recent
handbook [4].

3 Checking Language Equivalence

The key component of our minimization algorithm is the efficient test whether
some candidate automaton accepts the same language as the reference automa-
ton. As discussed in the introduction, we use a precise test to check whether
the language of the candidate automaton is contained in the language of the
reference automaton, and an approximative test, called bounded language con-
tainment, to check the opposite direction. These two tests are discussed in the
following two subsections.

3.1 Precise Language Containment

The standard way to check if the language of an automaton A is contained in the
language of an automaton A′ is to check whether the intersection of L(A) with
the complement of L(A′) is empty: L(A) ⊆ L(A′) iff L(A) ∩ (Σω \ L(A′)) = ∅.

The drawback of this approach is that the complementation of A′ is expen-
sive: the number of states in the complement automaton is exponential in the
number of states of A. In our construction, we use precise language containment
for checking whether the language of a candidate automaton A is contained in

π′0

π0

π′1

π1

π′2

π2

π′3

π3

π′4

π4

π′5

π5

π′6

π6

π′7

π7

π′8

π8

. . .

. . .

Fig. 2. A pair of runs with an acceptance lag of (at least) 3. The figure shows (prefixes
of) runs π and π′ of two Büchi automata on the same input word. Visits to accepting
states are depicted as double circles. The acceptance lag between π and π′ is at least
3, because π has 3 visits to accepting states between the two visits to accepting states
of π′ in positions 2 and 7.

the language of the reference automaton A+, but not for the opposite direction.
In this way, only a single complementation, of the reference automaton A+ into
its complement A−, is required. Furthermore, if A+ was obtained from an LTL
formula ψ, we obtain A− simply by translating the LTL formula ¬ψ to a Büchi
automaton.

3.2 Bounded Language Containment

Bounded language containment is an efficient approximative check if the lan-
guage of an automaton A is contained in the language of an automaton A′. In
addition to the standard language containment condition, that for every word
w ∈ Σω and accepting run π ∈ RF (A, w) in A, there must exist some accepting
run π′ ∈ RF (A′, w) in A′, we require that the number of visits to accepting
states in π between two visits to accepting states in π′ is bounded by some con-
stant. Formally, the acceptance lag between a run π = π0π1 . . . of A and a run
π′ = π′0π

′
1 . . . of A′ is defined as follows:

lag(π, π′) = max{j ∈ IN0 : ∃x1, . . . , xj ∈ IN0 : (∀1 ≤ i < j : xi < xi+1)

∧ (∀1 ≤ i ≤ j : πxi ∈ F) ∧ (∀x1 ≤ i ≤ xj : π′i /∈ F ′)}

In the example shown in Figure 2, the acceptance lag is (at least) 3, because π
has 3 visits to accepting states (in positions 3, 5, and 6) between the two visits
to accepting states of π′ in positions 2 and 7.

Clearly, if π is an accepting run and the lag between π and π′ is bounded by
some constant, then π′ is also accepting. Furthermore, if we have a word w that
is in the language of A but not in the language of A′, then the lag between some
accepting run of A on w and an arbitrary run of A′ on w is unbounded: any run
of A′ on w is rejecting and, hence, visits the accepting states only finitely often.
Thus, if we fix some bound b ∈ IN and observe that for every word w and every
run π ∈ RF (A, w), the lag between π and some run π′ ∈ R(A′, w) is at most b,
we can conclude that indeed L(A) ⊆ L(A′).

This observation is the motivation for the definition of bounded language
containment, which simultaneously checks the same bound for all words in Σω.
For a bound b ∈ IN, we say that the language of A is b-bounded contained in the

language of A′, denoted by L(A) ⊆b L(A′), if, for every word w ∈ Σω and every
π ∈ RF (A, w), there exists some π′ ∈ R(A′, w) such that lag(π, π′) ≤ b. We
use bounded language containment as a conservative approximation of language
containment: for every b ∈ IN, L(A) ⊆b L(A′) implies L(A) ⊆ L(A′).

The idea of the bounded language containment checking algorithm we de-
scribe next is to encode bounded language containment as a graph reachability
problem. The lag-checking graph branches according to the possible runs of A
and keeps track of the possible runs of A′ on the same input word. For this
purpose, the vertices of the lag-checking graph contain a counter value f(q′)
for each state q′ of A′ that indicates how many visits to accepting states in A
(without visiting accepting states in A′) are left before the paths through q′ will
exceed the bound on the acceptance lag.

Definition 1. For two Büchi automata A = (Q,Σ, δ, q0, F) and A′ =
(Q′, Σ, δ′, q′0, F

′), and a bound b ∈ IN, the lag-checking graph G(A,A′, b) =
〈V,E〉 consists of the following set V of vertices and set E ⊆ V × Σ × V of
labelled edges:

– V = Q× (Q′ → {0, . . . , b+ 1})
– For all (q1, f1), (q2, f2) ∈ V with q2 ∈ F , and for all x ∈ Σ, we have

((q1, f1), x, (q2, f2)) ∈ E if and only if (q1, x, q2) ∈ δ and
• for all q′2 ∈ F ′: if there exist some q′1 ∈ Q′ with f1(q′1) > 0 such that

(q′1, x, q
′
2) ∈ δ′, then f2(q′2) = b+ 1, otherwise f2(q′2) = 0;

• for all q′2 /∈ F ′: f2(q′2) = max({f1(q′1)−1 : q′1 ∈ Q′, (q′1, x, q′2) ∈ δ′}∪{0}).
– For all (q1, f1), (q2, f2) ∈ V with q2 /∈ F , and for all x ∈ Σ, we have

((q1, f1), x, (q2, f2)) ∈ E if and only if (q1, x, q2) ∈ δ and
• for all q′2 ∈ F ′: if there exists some q′1 ∈ Q′ with f(q′1) > 0 such that

(q′1, x, q
′
2) ∈ δ′, then f2(q′2) = b+ 1, otherwise f2(q′2) = 0;

• for all q′2 /∈ F ′: f2(q′2) = max({f1(q′1) : q′1 ∈ Q′, (q′1, x, q′2) ∈ δ′}).

If q0 /∈ F or q′0 ∈ F , we call the vertex (q0, f0), where f0(q′0) = b + 1 and
f0(q′) = 0 for all q′ ∈ Q′r {q′0}, the initial vertex; otherwise, the vertex (q0, f0),
where f0(q′0) = b and f0(q′) = 0 for all q′ ∈ Q′ r {q′0}, is the initial vertex.
Additionally, we call the vertices (q, f), where f(q′) = 0 for all q′ ∈ Q′, the final
vertices.

Figure 3 shows, as an example, the lag-checking graph G(A,A′, 1) for the
automata A and A′ from Figure 1 and bound 1. Since every reachable vertex
has some non-zero counter, there exists, for every run on A, a run of A′ on the
same input word such that the acceptance lag is bounded by 1. We formalize
the meaning of the node labels in the following lemmas.

Lemma 2. Let w = w0 . . . wk−1 ∈ Σ∗ be a finite word, A = (Q,Σ, δ, q0, F) and
A′ = (Q′, Σ, δ′, q′0, F

′) be two Büchi automata, π = π0 . . . πk be a prefix of a run
of A, and b > 0 be some bound. For any number c > 0 and state q′ ∈ Q′,

– if there exists some path (q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−1−−−→ (qk, fk) in

G(A,A′, b) from the initial vertex (q0, f0), such that qi = πi, for all i ∈
{0, . . . , k}, and fk(q′) = c,

q0
2
0
0

q1
2
0
2

q2
2
2
0

q3
1
2
2

q3
0
2
2

p

¬p

¬p

p

¬p, p

p

¬p

¬p, p

Fig. 3. Example lag-checking graph that shows that language of the automaton de-
picted on the left in Figure 1 is 1-bounded contained in the language of the automaton
depicted on the right in Figure 1. In each vertex (q, f) of the lag-checking graph, the
values of q, f(q′0), f(q′1) and f(q′2) are shown (from top to bottom). No final vertex
(i.e., no vertex (q, f) with f(q′) = 0 for all q′ ∈ Q′) is reachable.

– then there exists a run prefix π′ = π′0 . . . π
′
k in R(A′, w) with π′k = q′ such

that lag(π, π′) ≤ b and b− c + 1 visits to F have occurred along π after the
last visit to an accepting state in π′.

Lemma 3. Let w = w0 . . . wk−1 ∈ Σ∗ be a finite word, A = (Q,Σ, δ, q0, F) and
A′ = (Q′, Σ, δ′, q′0, F

′) be two Büchi automata, π = π0 . . . πk be a prefix of a run
of A, and b > 0 be some bound. For any number c > 0 and state q′ ∈ Q′,
– if there exists a run prefix π′ = π′0 . . . π

′
k in R(A′, w) with π′k = q′ such that

lag(π, π′) ≤ b and b − c + 1 visits to F have occurred along π after the last
visit to an accepting state in π′,

– then there exists some path (q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−1−−−→ (qk, fk) in

G(A,A′, b) from the initial vertex (q0, f0), such that qi = πi, for all i ∈
{0, . . . , k}, and fk(q′) ≥ c.

The lemmas are easy to prove by induction over the length of w, π and
π′ and a case split on the four possible combinations of whether πk ∈ F and
π′k ∈ F ′ hold or not. We use the two lemmas to reduce the bounded language
containment check to a reachability property of the lag-checking graph:

Theorem 4. Let A and A′ be two Büchi automata such that A has no dead-
ends, and let b ∈ IN be some bound. The following two conditions are equivalent:

1. L(A) ⊆b L(A′);
2. in the lag-checking graph G(A,A′, b), no final vertex is reachable from the

initial node.

The reachability of the final nodes can be checked by a simple depth-first or
breadth-first graph traversal.

4 SAT-based Minimization of Büchi Automata

We now describe a SAT-based algorithm for finding a small Büchi automaton
that accepts the same language as a given reference automaton A+. We use a
SAT solver to determine if, for a given number of states n, there is some au-
tomaton A that is equivalent to A+. For this purpose, we encode the candidate
automata symbolically using Boolean variables and search for a valuation that
corresponds to an automaton that passes the equivalence check defined in the
previous section. We start by defining, in the following subsection, the Boolean
encoding of the candidate automata. In Sections 4.2 and 4.3 we adapt the lan-
guage containment tests from the previous section to this setting.

4.1 Boolean Encodings of Büchi Automata

We give a Boolean encoding for a candidate automaton A = (Q,Σ, δ, q0, F) over
a given alphabet Σ and with a given number of states n = |Q|. Without loss
of generality, we assume Q = {1, . . . , n} and q0 = 1. It remains to encode the
transition relation δ and the set F of accepting states.

For every pair q, q′ ∈ Q of states and input letter s ∈ Σ, we define a boolean
variable 〈q, s, q′〉δ indicating whether (q, s, q′) ∈ δ′. Likewise, for all states q ∈ Q,
a boolean variable 〈q〉F is used for representing whether the state is accepting
or not.

Checking if there exists an automaton A with n states and L(A) = L(A+)
can be done by iterating over all possible transition relations δ and sets of final
states F . For every combination of δ and F , we check whether the language of
A with these values of δ and F is the same as the language of A+. For our
encoding, the overall search space thus has a size of 2n

2|Σ|+n. We can assume
that A+ has more than n states as otherwise the problem is trivial to solve (by
taking A = A+).

In the remainder of this section, we describe how to modify a SAT solver to
search for smaller equivalent Büchi automata over this Boolean encoding. For
this purpose we adapt the language equivalence check developed in the previous
section to work on partially specified automata, given by the partial valuation of
the variables 〈·〉δ and 〈·〉F provided by the SAT solver during the search.

This allows the SAT solver to recognize conflicts early. A commonly occurring
situation is, for example, that the candidate automaton has a self-loop in an
accepting initial state and, as a result, accepts words that are not in the language
ofA+. In this case, the decision procedure should be able to identify this situation
already after only the two corresponding bits have been set of true.

We split the language equivalence L(A) = L(A+) into its two language con-
tainment relations. For L(A) ⊆ L(A+), we adapt the precise language contain-
ment check from Section 3.1, for L(A+) ⊆ L(A) the bounded language con-
tainment check from Section 3.2. The two constructions are explained in the
following subsections.

4.2 Checking L(A) ⊆ L(A+)

As discussed in Section 3.1, we reduce L(A) ⊆ L(A+) to checking whether the
intersection of L(A) with the complement of L(A+) is empty.

During the search for a satisfying variable valuation, we perform the test
already on partially specified automata, i.e., when for some transitions it is not
(yet) known whether they are contained in the transition relation or not, and
for some states it is not (yet) known whether they are contained in the set of
accepting states. Thus, we need to be able to check if the candidate automaton
can be completed in a way such that (bounded) language containment holds.

In order to check language containment for a partially specified candidate
automaton, we interpret the “undecided” value ⊥ in a partial valuation as false.
Since this eliminates any transitions and accepting states that are not required
by the partial valuation, we thus obtain the candidate automaton with the least
language that is compatible with the decisions made so far.

If the intersected language is non-empty, we also provide the SAT solver
with a conflict clause. For this purpose, the emptiness check on the intersec-
tion automaton, which searches for a lasso path from the initial state to some
loop that contains an accepting state, annotates every state in the intersection
automaton with the predecessor state encountered during the search. When an
accepting lasso is found, this annotation is used to traverse the lasso backwards.
By collecting the negations of the literals in the SAT instance corresponding to
the transitions on the lasso and the literal for the accepting state, we extract a
conflict clause, which is used by the learning scheme of the SAT solver to avoid
a repetition of the decisions that have allowed the language of the candidate
automaton to become too large.

4.3 Checking L(A+) ⊆ L(A)

We check L(A+) ⊆ L(A) using the bounded language containment test de-
scribed in Section 3.2. In order to apply the test to partially specified candidate
automata, we interpret the “undecided” value ⊥ in a partial valuation as true,
and thus obtain the candidate automaton with the greatest language that is
compatible with the decisions made so far.

If the bounded language containment test L(A+) ⊆b L(A) fails, we again
supply the SAT solver with a cause for the conflict in order to benefit from its
learning scheme. The test fails when a final vertex is reachable in the lag-checking
graph G(A+,A, b). We collect the labels x ∈ Σ observed along the path from
the initial vertex to some final vertex and report all SAT variables set to false
corresponding to these alphabet symbols, along with all variables for final states
that are set to false.

4.4 Symmetry Breaking

The concept of symmetry breaking has been identified to be indispensable for
the efficient solution of many SAT problems [15]. Symmetry breaking prunes the

search space of a SAT solver by adding constraints that remove some solutions
that are isomorphic to others which are not pruned away. In the case of Büchi
automaton minimization, for example, swapping two states in the automaton
results in an automaton that is isomorphic to the original one.

For the purposes of this work, we break symmetry only partially as it has
been observed that this is often faster than performing total symmetry breaking
[15], where in the pruned state space, only one representative of each equivalence
class of the automata equivalent under isomorphism remains. This is done by
choosing some order over the variables and adding a (non-clausal) constraint
to the SAT problem that for n being the number of states of the candidate
automaton, for every i ∈ {1, . . . , n − 1}, swapping the ith and (i + 1)th state
does not result in an automaton that is lexicographically smaller with respect
to this bit order.

5 Experimental Evaluation1

We have evaluated the automaton minimization approach presented in this paper
on three benchmark sets from the literature, which have previously been used
to evaluate and compare LTL-to-Büchi translators:

– The 27 specifications from the paper “Efficient Büchi Automata from LTL
Formulae” by Fabio Somenzi and Roderick Bloem [16].

– The 12 specifications from the paper “Optimizing Büchi Automata” by
Kousha Etessami and Gerard J. Holzmann [8].

– 55 LTL properties built from the specification patterns in the paper “Prop-
erty Specification Patterns for Finite-state Verification” by Matthew B.
Dwyer, George S. Avrunin and James C. Corbett [6].

We have implemented a single-threaded prototype tool on top of the SAT
solver minisat v.1.12b [7]. Our tool reads in a reference automaton A+ and
its complement A− over some fixed alphabet Σ (using SPIN never-claim syntax)
and checks, for some given bound b ∈ IN and size n ∈ IN, whether there exists
a Büchi automaton A with n states such that L(A) ⊆ L(A+) and L(A+) ⊆b
L(A) (assuming that L(A+) = Σω \ L(A−)). All benchmarks were performed
on a computer with AMD Opteron 2.8Ghz processors running Linux. In our
experiments, we have used bounds between 1 and 8.

Our goal has been to start with Büchi automata that have already been op-
timized by the best currently available methods. Starting with the LTL formulas
from the benchmark suites, we therefore applied the two best currently avail-
able LTL-to-Büchi converters [14], namely spot v.0.5a [5] and ltl2ba v.1.1

[10] to compute the automata A+ and A−. The spot tool combines several
approaches and optimizations for the conversion process in one program; we ap-
plied all 15 different parameter combinations and took for every specification the

1 Details and a downloadable implementation of the approach can be found at
http://react.cs.uni-saarland.de/tools/nbwminimizer.

Table 1. Running times (in seconds) of our prototype tool for the specification (G¬s)∨
F(s ∧ (¬rU(t ∨ G¬r))), inducing automata sizes of |A+| = 6 and |A−| = 3. Gray table
cells represent cases in which the solver found out that the instance is satisfiable, i.e.,
some smaller automaton has been found. The respective tables for all 94 benchmarks
can be found at http://react.cs.uni-saarland.de/tools/nbwminimizer.

states / bound 1 2 3 4 5 6 7 8

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.01

3 0.01 0.03 0.05 0.1 0.1 0.1 0.12 0.11

4 0.52 1.15 2.21 1.33 1.07 2.35 2.74 2.05

5 0.3 1.03 27.28 10.24 56.41 59.21 80.2 80.1

smallest automata encountered for some tool/parameter combination. In total,
this scheme resulted in 94 ·16 ·2 calls to LTL-to-Büchi converters. In two of these
cases, running spot required more than 5 minutes due to a expensive optimiza-
tion. In these cases, we aborted the run and took the best automaton found by
some other run instead. All in all, the computation of the Büchi automata took
about 60 minutes on the computer mentioned above.

Table 1 shows the running times of our prototype tool on a typical (but rather
small) specification from the third benchmark set. For some smaller values of
the bound and number of states in the candidate automaton, the solver ran
too quickly to measure its running time with the Linux time utility. On the
other hand, needlessly large values of n and b can delay the termination of the
SAT solver unnecessarily. Thus, for a meaningful application of the solver in
practice, an evaluation scheme is necessary, which fixes how the solver runs for
the individual bound and target state number values are combined to an overall
Büchi automaton size reduction program. We propose two such schemes here:

– Scheme A: The solver is applied repeatedly to the state number/bound
pairs (1, 1), (1, 2), . . . , (1, 8), (2, 1), (2, 2), . . . until we obtain the result that
the SAT instance is satisfied (so a smaller automaton is found) or until the
results for all state number/bound pairs have been computed.

– Scheme B: We assume that for all state number/bound pairs, the SAT
solving instances are started in parallel (taking for granted that we have
sufficiently many computers at hand). Once the minimal state number (for
the chosen maximal bound of 8) can be deduced from the results obtained
so far, all remaining SAT solving runs are stopped. Here, the computation
time is defined to be the time after which the solver runs are stopped.

In both cases, we have chosen a timeout of 12 hours and a memory limit of
2 GB for the individual runs of the SAT solver. Table 2 contains an overview of
the results for these two schemes, grouped by the benchmark sets. In all of the
cases, the smallest automata we found have been obtained already with a bound
of 2. Furthermore, in most cases where a smaller Büchi automaton was found,
this was already the case with a bound of 1. Additionally, for only 8 out of the

Table 2. Overview table of the experimental evaluation, grouped by benchmark suites.

[16] [8] [6]

Automata in benchmark suites 27 12 55

Cases for which a smaller automaton was
found

7 0 36

Cases for which no smaller automaton
was found

20 10 15

Cases for which a smaller automaton was
found but it is not known if it is the smallest
one (w.r.t. the maximum bound of 8)

2 0 2

Cases for which it is unknown if there
exists a smaller automaton

0 2 4

Maximum size saving: 3 out of 5 −/− 22 out of 28

Average size saving: 7.28% 0.0% 24.0%

Mean computation times (Scheme A): 85669.87 s 83711.1 s 194558.8 s

Mean computation times (Scheme B): 4454.274 s 7203.017 s 4850.677 s

Minimum ratio between A+ and A−: 1/2 2/3 1/2

Median ratio between A+ and A−: 2/2 2/2 5/3

Maximum ratio between A+ and A−: 5/4 6/6 28/5

94 specifications considered, the maximum time of 12 hours per SAT solver run
was insufficient to decide whether the input automaton was already the smallest
equivalent one (with respect to the maximum bound of 8), which shows that the
technique presented in this paper is indeed useful.

Finally, we discuss the scalability of our approach. Figure 4 correlates the
original and reduced sizes of the automata for the specifications considered with
the running times of the reduction process using the schemes described above. It
can be seen that the running time of our technique is roughly exponential in the
number of states. However, the figure shows that with this investment in terms
of computation time, significant size savings are possible.

6 Discussion

In this paper, we have presented a new approach for the optimization of Büchi
automata that allows for significant further size reductions over standard tech-
niques when more time can be invested in the minimization of the automaton.
The new approach is based on a combination of bounded language containment
checking, which allows us to fine-tune the precision and efficiency of the check,
and SAT solving, which allows us to prune large parts of the search space for
smaller automata already in the early solving stages. We conclude the paper
by discussing the limits of the approach and its relation to simulation-based
optimization methods.

A limitation of the approach is that bounded language containment is only
an approximation of language containment. Figure 5 shows two equivalent au-

1 4 7 10 13 16

0.1

1

10

100

1000

10000

100000

1000000

28

1 4 7 10 13 16

0.1

1

10

100

1000

10000

28

states

time (in seconds) time (in seconds)

states

Fig. 4. Running times (in seconds, Y-axis) and automata sizes (in number of states, X
axis) for the 95 specifications in our experimental evaluation. The left table corresponds
to evaluation scheme A, the right table to scheme B. Automata whose sizes were not
reduced by our technique are denoted by a circle, bars indicate the original and reduced
sizes of the automata whenever a smaller automaton was found.

q0

q1

q2

q3

q4

q5

¬p ∧ ¬r

r

p ∧ ¬r

¬p

p

p

¬p

p

p,¬p

¬p

¬p

p

(a) A

q+0

q+1

q+2

q+3

q+4

¬p ∨ r

p ∨ r

¬p

p

p

¬p

p

¬p

¬p

p

(b) A′

Fig. 5. Two Büchi automata, A and A′ that are language equivalent, but not bounded
language equivalent: L(A) = L(A′), but L(A) 6⊆b L(A′) for every b ∈ IN. For the word
w = {r}{p}(b+1)∅(b+1){p}ω, the acceptance lag between the unique accepting runs for
this word is b, for every b ∈ IN.

tomata for which the bounded language containment check L(A) ⊆b L(A′) fails.
Consider the word w = {r}{p}(b+1)∅(b+1){p}ω for some value of b ∈ IN. Regard-
less of the actual choice of b, the word is clearly accepted by both automata.
The acceptance lag between the unique accepting runs for this word is b. Thus,
for all b ∈ IN, there exists a witness for the fact that L(A) 6⊆b L(A′), showing
that bounded language containment is sound but not complete.

In practice, of course, this limitation matters very little, since, in order to
limit the running time, the test cannot be used with arbitrarily large bounds. In
fact, our experimental evaluation shows that the approach is already very useful
for small bounds. This success can be explained by the fact the bounded language
containment check, which is the only part of the approach which can make it
incomplete, has several nice properties. First of all, if the reference automaton is a
safety automaton (a safety automaton is a Büchi automaton with only accepting
states), then even for a bound of 1, we never miss a smaller safety automaton
in the search process. This can easily be seen from the fact that the acceptance
lag between an accepting run of the candidate automaton and an accepting run
of the reference automaton is always 0 (as all states are accepting). Thus, our
technique is complete for the minimization of safety automata, which is itself a
PSPACE-complete problem.

Furthermore, the approach is complete with respect to previous approaches
to the minimization of Büchi automata. In [9], the usage of fair simulation
for approximating Büchi automaton language containment is discussed. In this
setting, language containment can be proven by showing that a simulation parity
game is winning for the duplicator player. From the structure of this parity game
and the fact that parity games are memoryless determined, it can immediately
be deduced that the duplicator player can only win if it is able to mimic an
accepting run in the reference automaton A+ by some accepting run in the

candidate automaton A such that the acceptance lag is below |A+| · |A|. Thus,
by setting the bound in our approach to this value, we do not miss automata
that would be found using fair bisimulation. Furthermore, in our technique, one
direction of the language containment check is precise and by using SAT solving
as the reasoning backbone, the limitations of bisimulation quotienting for fair
simulation in the classical approaches are avoided.

Note that our approach strictly subsumes simulation-based methods (for fair,
delayed and direct simulation). One such example is given in Figure 1: states q′1
and q′2 do not simulate state q3. As a result, simulation-based methods cannot
reduce the 4-state automaton A to the 3-state automaton A′.

Acknowledgements

The authors want to thank Alexandre Duret-Lutz from the spot team for the
support with the specifications and the converter.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories.

[4] 825–885
3. Berry, G., Comon, H., Finkel, A., eds.: Computer Aided Verification, 13th Inter-

national Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings. In
Berry, G., Comon, H., Finkel, A., eds.: CAV. Volume 2102 of Lecture Notes in
Computer Science., Springer (2001)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
IOS Press (2009)

5. Duret-Lutz, A., Poitrenaud, D.: Spot: An extensible model checking library using
transition-based generalized büchi automata. In DeGroot, D., Harrison, P.G., Wi-
jshoff, H.A.G., Segall, Z., eds.: MASCOTS, IEEE Computer Society (2004) 76–83

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In Ardis, M., ed.: Proceedings of the 2nd Workshop on
Formal Methods in Software Practice (FMSP’98), New York, ACM Press (March
1998) 7–15

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella,
A., eds.: SAT. Volume 2919 of Lecture Notes in Computer Science., Springer (2003)
502–518

8. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In Palamidessi, C., ed.:
CONCUR. Volume 1877 of Lecture Notes in Computer Science., Springer (2000)
153–167

9. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for büchi automata. In Orejas, F., Spirakis, P.G., van
Leeuwen, J., eds.: ICALP. Volume 2076 of Lecture Notes in Computer Science.,
Springer (2001) 694–707

10. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. [3] 53–65
11. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-

ification of linear temporal logic. In Dembinski, P., Sredniawa, M., eds.: PSTV.
Volume 38 of IFIP Conference Proceedings., Chapman & Hall (1995) 3–18

12. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation
of LTL formulae to Büchi automata. In Peled, D., Vardi, M.Y., eds.: FORTE.
Volume 2529 of Lecture Notes in Computer Science., Springer (2002) 308–326

13. Holzmann, G.: The Spin model checker: primer and reference manual. Addison-
Wesley Professional (2003)

14. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In Bosnacki, D., Edelkamp,
S., eds.: SPIN. Volume 4595 of Lecture Notes in Computer Science., Springer (2007)
149–167

15. Sakallah, K.A.: Symmetry and Satisfiability. [4] 289–338
16. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In Emerson,

E.A., Sistla, A.P., eds.: CAV. Volume 1855 of Lecture Notes in Computer Science.,
Springer (2000) 248–263

A Proofs

A.1 Proofs of Lemma 2 and Lemma 3

For simplicity, for the following proofs, we define a function ψ over two traces
in A and A′ for all n ∈ IN0, π = π0 . . . πn ∈ Qn and π′ = π′0 . . . π

′
n ∈ (Q′)n as

follows:

ψ(π, π′) = max{j ∈ IN0 : ∃x1, . . . , xj ∈ IN0 : (∀1 ≤ i < j : xi < xi+1)

∧ (∀1 ≤ i ≤ j : πxi
∈ F) ∧ (∀x1 ≤ i ≤ n : π′i /∈ F ′)}

Additionally, we define {a 7→ b} to denote the function mapping a to b and
all other elements of some set containing a to the value 0.

Note that the definitions of the functions lag and ψ only differ in one point:
only the parts in the prefix runs after the last visit to F ′ are taken into account.
Thus, ψ formalizes the prose text in the claim of Lemma 2. We can thus restate
the lemmas as follows:

Lemma 5. Let w = w0 . . . wk−1 ∈ Σ∗ be a finite word, A = (Q,Σ, δ, q0, F) and
A′ = (Q′, Σ, δ′, q′0, F

′) be two Büchi automata, π = π0 . . . πk be a prefix of a run
of A, and b > 0 be some bound. For any number c > 0 and state q′ ∈ Q′,

– if there exists some path (q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−1−−−→ (qk, fk) in

G(A,A′, b) from the initial vertex (q0, f0), such that qi = πi, for all i ∈
{0, . . . , k}, and fk(q′) = c,

– then there exists a run prefix π′ = π′0 . . . π
′
k in R(A′, w) with π′k = q′ such

that lag(π, π′) ≤ b and ψ(π, π′) = b− c+ 1.

Proof. The proof is carried out by induction.

– Induction basis:

• Case q0 ∈ F ∧ q′0 /∈ F ′: In this case, we have that the initial vertex
in G(. . .) is defined to be (q0, {q′0 7→ b}). Clearly, ψ(q0, q

′
0) = 1 and

lag(q0, q
′
0) ≤ 1 ≤ b.

• Case q0 /∈ F ∨ q′0 ∈ F ′: In this case, we have that the initial vertex
in G(. . .) is defined to be (q0, {q′0 7→ b + 1}). Clearly, ψ(q0, q

′
0) = 0 and

lag(q0, q
′
0) = 0 < b.

– Induction step: Assume that the claim holds for some k. Then we extend
it to k + 1.

• Case qk+1 /∈ F+ ∧ q′ /∈ F :

∗ Assume that we have some path (q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−−→

(qk+1, fk+1) given.
∗ By the induction hypothesis, for all q′p ∈ Q and cp > 0, we can deduce

from the fact that fk(q′p) = cp that there exists some path π′ =
π′0 . . . π

′
k in A′ with lag(q0 . . . qk, π

′) ≤ b for and ψ(q0 . . . qk, π
′) =

b− cp + 1.

∗ We have to find such a path π̃′ for q′ and c from (q0, f0)
w0−−→

(q1, f1)
w1−−→ . . .

wk−−→ (qk+1, fk+1) under the assumption that
fk+1(q′) = c > 0.

∗ Since qk+1 /∈ F and q′ /∈ F ′, we can assume that there exists some
q′p ∈ Q′ such that (q′p, wk, q

′) ∈ δ′ and fk(q′p) = c as otherwise we

cannot have (qk, fk)
wk−−→ (qk+1, fk+1) in G(. . .).

∗ Since qk+1 /∈ F and q′ /∈ F ′, this means that the path π̃′ = π′0 . . . π
′
kq
′

has lag(q0 . . . qk+1, π̃
′) ≤ b for suitable π′0 . . . π

′
k (which must exist by

the IH) and ψ(q0 . . . qk+1, π̃
′) = b− c+ 1.

• Case q′ ∈ F ′:
∗ Assume that we have some path (q0, f0)

w0−−→ (q1, f1)
w1−−→ . . .

wk−−→
(qk+1, fk+1) given.

∗ By the induction hypothesis, for all q′p ∈ Q and cp > 0, we can
deduce from the fact that fk(q′p) = cp that there exists some path
π′ = π′0 . . . π

′
k in A′ with lag(q0 . . . qk, π

′) ≤ b and ψ(q0 . . . qk, π
′) =

b− cp + 1.

∗ We have to find such a path π̃′ for q′ and c from (q0, f0)
w0−−→

(q1, f1)
w1−−→ . . .

wk−−→ (qk+1, fk+1) under the assumption that
fk+1(q′) = c > 0.

∗ Since c > 0, by the construction of G(. . .), there must exist some
q′p such that fk(q′p) = cp for some cp > 0 and (q′p, wk, q

′) ∈ δ′.
Furthermore we know that in this case c = b+ 1.

∗ We can thus construct π̃′ = π′0 . . . π
′
kq
′ for suitable π′0 . . . π

′
k (which

must exist by the IH). Since lag(q0 . . . qk, π
′) ≤ b and q′ ∈ F ′, we

have lag(q0 . . . qk+1, π̃
′) ≤ b and ψ(q0 . . . qk+1, π̃

′) = 0.
• Case qk+1 ∈ F ∧ q′ /∈ F ′:
∗ Assume that we have some path (q0, f0)

w0−−→ (q1, f1)
w1−−→ . . .

wk−−→
(qk+1, fk+1) given.

∗ By the induction hypothesis, for all q′p ∈ Q and cp > 0, we can
deduce from the fact that fk(q′p) = cp that there exists some path
π′ = π′0 . . . π

′
k in A′ with lag(q0 . . . qk, π

′) ≤ b and ψ(q0 . . . qk, π
′) =

b− cp + 1.

∗ We have to find such a path π̃′ for q′ and c from (q0, f0)
w0−−→

(q1, f1)
w1−−→ . . .

wk−−→ (qk+1, fk+1) under the assumption that
fk+1(q′) = c > 0.

∗ Since c > 0 and due to the construction of G(. . .), we know that there
must exist some q′p such that fk(q′p) = c+ 1 and (q′p, wk, q

′) ∈ δ′. As
we know that lag(q0 . . . qk, π

′) ≤ b and ψ(q0 . . . qk, π
′) = b − c +

2, we know that lag(q0 . . . qkqk+1, π̃
′) ≤ b for π̃′ = π′0 . . . π

′
kq
′ and

ψ(q0 . . . qkqk+1, π̃
′) = b − c + 1 for suitable π′0 . . . π

′
k (which must

exist by the IH).

Lemma 6. Let w = w0 . . . wk−1 ∈ Σ∗ be a finite word, A = (Q,Σ, δ, q0, F) and
A′ = (Q′, Σ, δ′, q′0, F

′) be two Büchi automata, π = π0 . . . πk be a prefix of a run
of A, and b > 0 be some bound. For any number c > 0 and state q′ ∈ Q′,

– if there exists a run prefix π′ = π′0 . . . π
′
k in R(A′, w) with π′k = q′ such that

lag(π, π′) ≤ b and ψ(π, π′) = b− c+ 1

– then there exists some path (q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−1−−−→ (qk, fk) in

G(A,A′, b) from the initial vertex (q0, f0), such that qi = πi, for all i ∈
{0, . . . , k}, and fk(q′) ≥ c.

Proof. This proof is also carried out by induction.

– Induction basis:
• Case q0 ∈ F ∧ q′0 /∈ F ′: Here, for A as well as A′, there is only one path

per automaton for the empty word, namely q0 and q′0, respectively. Ob-
viously, lag(q0, q

′
0) ≤ b for b ≥ 1. Additionally, the initial vertex (q0, f0)

has f0(q′0) = b by the construction of G(. . .). As for q0 ∈ F ∧ q′0 /∈ F ′,
ψ(q0, q

′
0) = 1, the claim holds.

• Case q0 /∈ F ∨ q′0 ∈ F ′: Here, for A as well as A′, there is only one path
per automaton for the empty word, namely q0 and q′0, respectively. Ob-
viously, lag(q0, q

′
0) ≤ b for b ≥ 1. Additionally, the initial vertex (q0, f0)

has f0(q′0) = b+ 1 by the construction of G(. . .). As for q0 /∈ F ∨ q′0 ∈ F ,
we have ψ(q0, q

′
0) = 0, the claim holds.

– Induction step: By the induction hypothesis, we can assume that for ev-
ery prefix path π = π0 . . . πk in R(A, w0 . . . wk−1) and every prefix path
π′ = π′0 . . . π

′
k in R(A′, w0 . . . wk−1) with π′k = q′p for some q′p ∈ Q′,

lag(π, π′) ≤ b and ψ(π, π′) = cp for some cp > 0, we have some path

(q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−1−−−→ (qk, fk) in G(. . .) with fk(q′p) ≥ b− cp + 1,

qi = πi for all 0 ≤ i ≤ k, and (q0, f0) is the initial vertex.
We need to prove that given some prefix paths π = π0 . . . πk+1 in R(A, w)
and some prefix path π′ = π′0 . . . π

′
k+1 in R(A′, w) with π′k+1 = q′ for some

q′ ∈ Q′, lag(π, π′) ≤ b and ψ(π, π′) = c, we have some path (q0, f0)
w0−−→

(q1, f1)
w1−−→ . . .

wk−−→ (qk+1, fk+1) in G(. . .) with fk(q′) ≥ b− c+ 1, qi = πi for
all 0 ≤ i ≤ k + 1, and (q0, f0) is the initial vertex.

• Case π′k+1 ∈ F ′:
∗ For lag(π, π′) ≤ b to hold, we must have lag(π0 . . . πk, π

′
0 . . . π

′
k) ≤ b

and ψ(π0 . . . πk, π
′
0 . . . π

′
k) ≤ b. Thus, by the IH, there exists some

path (q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−1−−−→ (qk, fk) in G(. . .) with

fk(π′k) ≥ b − ψ(π0 . . . πk, π
′
0 . . . π

′
k) + 1, qi = πi for all 0 ≤ i ≤ k,

and qk = πk.
∗ For π and π′ to be valid, we must further have (πk, wk, πk+1) ∈ δ

and (π′k, wk, π
′
k+1) ∈ δ′.

∗ In such a case, the construction of G(. . .) makes sure that then there

is a transition (qk, fk)
wk−−→ (qk+1, fk+1) in G(. . .) with qk+1 = πk+1

and fk+1(π′k+1) = b+ 1.
∗ Since π′k+1 ∈ F ′, we must have ψ(π, π′) = 0.
∗ Since π′k+1 ∈ F ′ and lag(π0 . . . πk, π

′
0 . . . π

′
k) ≤ b, we have lag(π, π′) ≤

b.
∗ Thus, fk+1(π′k+1) = b+1 is a correct value for the claim satisfaction.

• Case πk+1 /∈ F ∧ π′k+1 /∈ F ′:
∗ For lag(π, π′) ≤ b to hold, we must have lag(π0 . . . πk, π

′
0 . . . π

′
k) ≤ b

and ψ(π0 . . . πk, π
′
0 . . . π

′
k) ≤ b. Thus, by the IH, there exists some

path (q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−1−−−→ (qk, fk) in G(. . .) with

fk(π′k) ≥ b − ψ(π0 . . . πk, π
′
0 . . . π

′
k) + 1, qi = πi for all 0 ≤ i ≤ k,

and qk = πk.
∗ For π and π′ to be valid, we must further have (πk, wk, πk+1) ∈ δ

and (π′k, wk, π
′
k+1) ∈ δ′.

∗ In such a case, the construction of G(. . .) makes sure that then there

is a transition (qk, fk)
wk−−→ (qk+1, fk+1) in G(. . .) with qk+1 = πk+1

and fk+1(π′k+1) ≥ fk(π′k).
∗ Since πk+1 /∈ F and π′k+1 /∈ F ′, we must have ψ(π, π′) = ψ(π0 . . . πk,
π′0 . . . π

′
k).

∗ Since πk+1 /∈ F , π′k+1 /∈ F ′, and lag(π0 . . . πk, π
′
0 . . . π

′
k) ≤ b, we have

lag(π, π′) ≤ b.
∗ Thus, fk+1(π′k+1) ≥ fk(π′k) is a correct value for the claim satisfac-

tion.
• Case πk+1 ∈ F ∧ π′k+1 /∈ F ′:
∗ For lag(π, π′) ≤ b to hold, we must have lag(π0 . . . πk, π

′
0 . . . π

′
k) ≤ b

and ψ(π0 . . . πk, π
′
0 . . . π

′
k) ≤ b. Thus, by the IH, there exists some

path (q0, f0)
w0−−→ (q1, f1)

w1−−→ . . .
wk−1−−−→ (qk, fk) in G(. . .) with

fk(π′k) ≥ b − ψ(π0 . . . πk, π
′
0 . . . π

′
k) + 1, qi = πi for all 0 ≤ i ≤ k,

and qk = πk.
∗ For π and π′ to be valid, we must further have (πk, wk, πk+1) ∈ δ

and (π′k, wk, π
′
k+1) ∈ δ′.

∗ In such a case, the construction of G(. . .) makes sure that then there

is a transition (qk, fk)
wk−−→ (qk+1, fk+1) in G(. . .) with qk+1 = πk+1

and fk+1(π′k+1) ≥ fk(π′k)− 1.
∗ Since π′k+1 /∈ F ′, πk+1 ∈ F and lag(π, π′) ≤ b, we must have
ψ(π, π′) = ψ(π0 . . . πk, π

′
0 . . . π

′
k)− 1.

∗ Since π′k+1 /∈ F ′, πk+1 ∈ F , ψ(π0 . . . πk, π
′
0 . . . π

′
k) ≤ b − 1 and

lag(π0 . . . πk, π
′
0 . . . π

′
k) ≤ b, we have lag(π, π′) ≤ b.

∗ Thus, fk+1(π′k+1) ≥ fk(π′k)− 1 is a correct value for the claim satis-
faction.

