
Unbeast: Symbolic Bounded Synthesis?

Rüdiger Ehlers

Reactive Systems Group
Saarland University

Abstract. We present Unbeast v.0.6, a tool for synthesising finite-
state systems from specifications written in linear-time temporal logic
(LTL). We combine bounded synthesis, specification splitting and sym-
bolic game solving with binary decision diagrams (BDDs), which allows
tackling specifications that previous tools were typically unable to han-
dle. In case of realizability of a given specification, our tool computes
a prototype implementation in a fully symbolic way, which is especially
beneficial for settings with many input and output bits.

1 Introduction

Specification engineering is known to be a tedious and error-prone task. During
the development of complex systems, the early versions of the specifications for
the individual parts of the system often turn out to be incomplete or unrealisable.
In order to effectively detect such problems early in the development cycle,
specification debugging tools have been developed.

One particularly well-known representative of this class are synthesis tools for
reactive systems. These take lists of input and output bits and a temporal logic
formula in order to check whether there exists a reactive system reading from
the specified input signals and writing to the given output signals that satisfies
the specification. In case of a positive answer, they also generate a finite-state
representation of such a system. Then, by simulating the resulting system and
analysing its behaviour, missing constraints in the specification can often be
found.

In this work, we report on the Unbeast tool, which performs this task for
specifications written in linear-time temporal logic (LTL). By combining the
merits of the bounded synthesis approach [7] with using binary decision dia-
grams (BDDs) as the symbolic reasoning backbone and the idea of splitting the
specification into safety and non-safety parts, we achieve competitive computa-
tion times in the synthesis process. Our approach extracts implementations for
realisable specifications in a fully symbolic manner, which is especially fruitful
for systems with many input and output bits. As a consequence, even in the
development of comparably complex systems that typically fall into this class,
our tool is applicable to at least the initial versions of a successively built speci-
fication, despite the fact that the synthesis problem is 2EXPTIME-complete.

? This work was partially supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).



2 Tool description

Input language: The tool takes as input XML files that provide all informa-
tion necessary for the synthesis process. We assume that the specification of
the system has the form (a1 ∧ . . . ∧ an) → (g1 ∧ . . . ∧ gm), where each of
a1, . . . , an, g1, . . . , gm is an LTL formula. Such formulas are typical for cases
in which a component of a larger system is to be synthesised: the assumptions
a1, . . . , an represent the behaviour of the environment that the system can as-
sume, whereas the guarantees g1, . . . , gn reflect the obligations that the system
to be synthesised needs to fulfil.

Tool output: In case of a realisable specification, a system implementation in
form of a NuSMV [2] model is produced (if wanted). Alternatively, the user has
the possibility to run a simulation of a system satisfying the specification, where
the user provides the input to the system. If the specification is unrealisable, the
roles in the simulation are swapped – the tool then demonstrates interactively
which environment behaviour leads to a violation of the specification.

2.1 Technology

The Unbeast v.0.6 tool implements the synthesis techniques presented in [7, 3].
We use the library Cudd v.2.4.2 [8] for constructing and manipulating BDDs
during the synthesis process. We constrain its automatic variable reordering
feature by enforcing that predecessor and successor variables in the transition
relation are pairwise coupled in the ordering.

The first step is to determine which of the given assumptions and guarantees
are safety formulas. In order to detect also simple cases of pathological safety
[6], this is done by computing an equivalent Büchi automaton using the external
LTL-to-Büchi converter ltl2ba v.1.1 [5] and examining whether all maximal
strongly connected components in the computed automaton do not have infinite
non-accepting paths. We take special care of bounded look-ahead safety formulas:
these are of the form G(ψ) for the LTL globally operator G and some formula
ψ in which the only temporal operator allowed is the next-time operator. They
are immediately identified as being safety formulas.

In a second step, for the set of bounded look-ahead assumptions and the set of
such guarantees, we build two safety automata for their respective conjunctions.
Both of them are represented in a symbolic way, i.e., we allocate predecessor and
successor state variables that encode the last few input/output bit valuations and
compute a transition relation for this automaton in BDD form. For the remaining
safety assumptions and guarantees, safety automata are built by taking the Büchi
automata computed in the previous step and applying a subset construction for
determinisation in a symbolic manner. For the remaining non-safety parts of the
specification, a combined universal co-Büchi automaton is computed by calling
ltl2ba again.

In the next phase, the given specification is checked for realisability. Here, for
a successively increasing so-called bound value, the bounded synthesis approach
[7] is performed by building a safety automaton from the co-Büchi automaton



Table 1. Running times (in seconds) of Unbeast v.0.6 and Acacia v.0.3.9.9 on
the load balancing case study on a Sun XFire computer with 2.6 Ghz AMD Opteron
processors running an x64-version of Linux. All tools considered are single-threaded.
We restricted the memory usage to 2 GB and set a timeout of 3600 seconds.

Tool Setting / # Clients 2 3 4 5 6 7 8 9

A
1

+ 0.4 + 0.5 + 0.7 + 0.9 + 1.4 + 2.7 + 5.5 + 12.7
U+S + 0.0 + 0.1 + 0.0 + 0.0 + 0.1 + 0.1 + 0.1 + 0.1
U−S + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.1 + 0.1

A
1 ∧ 2

+ 0.4 + 0.4 + 0.4 + 0.5 + 0.6 + 0.9 + 1.6 + 3.0
U+S + 0.0 + 0.1 + 0.0 + 0.0 + 0.0 + 0.0 + 0.1 + 0.1
U−S + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.1

A
1 ∧ 2 ∧ 3

- 21.8 - 484.3 timeout timeout timeout memout memout timeout
U - 0.1 - 0.1 - 0.1 - 0.1 - 0.3 - 1.0 - 6.8 - 73.2

A
1 ∧ 2 ∧ 4

+ 0.7 + 1.4 + 8.5 memout memout memout memout timeout
U+S + 0.2 + 0.3 + 1.0 + 35.5 + 214.1 timeout timeout timeout
U−S + 0.1 + 0.2 + 0.3 + 2.5 + 3.1 + 11.2 + 48.3 + 386.4

A
1 ∧ 2 ∧ 4 ∧ 5

- 148.7 timeout timeout timeout memout memout memout timeout
U - 0.2 - 0.5 - 909.4 timeout timeout timeout timeout timeout

A
6→ 1 ∧ 2 ∧ 4 ∧ 5

- 179.1 timeout timeout timeout memout memout timeout timeout
U - 0.1 - 0.7 - 585.5 timeout timeout timeout timeout timeout

A
6 ∧ 7→ 1 ∧ 2 ∧ 4 ∧ 5

- 182.7 memout timeout timeout timeout timeout timeout timeout
U - 0.2 - 1.5 - 787.9 timeout timeout timeout timeout timeout

A
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8

+ 11.6 + 68.8 + 406.6 memout timeout timeout timeout timeout
U+S + 0.1 + 0.4 + 1.4 + 86.6 + 1460.4 timeout timeout timeout
U−S + 0.1 + 0.2 + 0.4 + 3.7 + 3.9 + 17.7 + 84.1 + 1414.3

A
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

- 41.0 - 1498.9 timeout memout timeout timeout timeout timeout
U - 0.1 - 0.1 - 0.2 - 0.9 - 15.8 - 427.9 timeout timeout

A
6 ∧ 7 ∧ 10→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

+ 67.5 + 660.1 memout timeout timeout timeout timeout timeout
U+S + 0.3 + 2.2 + 36.0 + 899.3 timeout timeout timeout timeout
U−S + 0.2 + 0.6 + 11.6 + 16.9 + 1222.2 timeout timeout timeout

for the non-safety part of the specification and solving the safety games induced
by a special product of the automata involved [3].

Finally, if the specification is found to be realisable (i.e., the game computed
in the previous phase is winning for the player representing the system to be syn-
thesised), the symbolic representation of the winning states of the system is used
to compute a prototype implementation satisfying the specification. Intuitively,
this is done by constructing a circuit that keeps track of the current position in
the game and computes a transition to another winning position whose input
matches the one observed after each computation cycle. At the same time, the
output labelling along the transition is used as the output for the system. For
this computation, only the BDD representation of the winning positions is used.

3 Experimental results

We use a load balancing system [3] as our case study. The specification is sup-
posed to be successively built by an engineer who applies a synthesis tool after
each modification of the specification. The setting is parametrised by the number
of servers the balancer is meant to work for. For some number of servers n ∈ IN,
the load balancer has n+ 1 input bits and n output bits.

Table 1 surveys the results. The individual assumptions and guarantees in
the specification are numbered as in [3]. For example, the setting 6→ 1∧2∧4∧5



corresponds to a specification with the assumption no. 5 and the guarantees no. 2,
4, and 6. For every setting, the table describes whether the specification was
found to be realisable (“+”) or not (“−”) and the running times for the Acacia
v.0.3.9.9 [4] tool (abbreviated by “A”) and Unbeast (abbreviated by “U”).
Both tools can only check for either realisability or unrealisabilty at a time.
Thus, we ran them for both cases concurrently and only report the running
times of the instances that terminated with a positive answer. For realisable
specifications, for our tool, we distinguish between the cases that a system is to
be synthesised (“+S“) or just realisability checking is to be performed (”−S“).
We did not configure Acacia to construct an implementation.

4 Conclusion

We presented Unbeast, a tool for the synthesis of reactive systems from LTL
specifications. In the experimental evaluation, we compared our tool against
Acacia on a case study from [3] and found it to be faster in all cases, some-
times even orders of magnitude. For academic purposes, the tool can freely be
downloaded from http://react.cs.uni-saarland.de/tools/unbeast.

Especially when only realisability of a specification is to be checked, the
BDD-based bounded synthesis approach turns out to work well. However, it can
be observed that extracting a prototype implementation significantly increases
the computation time. This is in line with the findings in [1], where the same
observation is made in the context of synthesis from a subset of LTL. We see
this as a strong indication that the problem of extracting winning strategies from
symbolically represented games requires further research.

References

1. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from PSL. ENTCS 190(4) (2007) 3–16

2. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In Brinksma, E., Larsen, K.G., eds.: CAV. Volume 2404 of LNCS., Springer
(2002) 359–364

3. Ehlers, R.: Symbolic bounded synthesis. In Touili, T., Cook, B., Jackson, P., eds.:
CAV. Volume 6174 of LNCS., Springer (2010) 365–379

4. Filiot, E., Jin, N., Raskin, J.F.: An antichain algorithm for LTL realizability. In
Bouajjani, A., Maler, O., eds.: CAV. Volume 5643 of LNCS., Springer (2009) 263–
277

5. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In Berry, G.,
Comon, H., Finkel, A., eds.: CAV. Volume 2102 of LNCS., Springer (2001) 53–65

6. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3) (2001) 291–314

7. Schewe, S., Finkbeiner, B.: Bounded synthesis. In Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y., eds.: ATVA. Volume 4762 of LNCS., Springer (2007)
474–488

8. Somenzi, F.: CUDD: CU Decision Diagram package release 2.4.2 (2009)



A Tool information

Unbeast v.0.6 was written in C++ and is available for download from the URL
given in the paper in an aggregated source code form. The tool can freely be
used for academic purposes, but does not have an open source license. Unbeast
comes with comprehensive documentation that gets one easily started.

B Testing the output of the tool

In order to gain confidence in the correctness of the results produced by our tool,
we ran some tests. First of all, the realisability/unrealisability results for the case
study in the paper always match between the Acacia tool and Unbeast.

Additionally, we used the 23 mutex variations from [11, 4] as test cases. For
usage with our tool, we adapted these examples to the Mealy-type computation
model used in this work by prefixing all references to input variables with a next-
time operator. The realisability/unrealisability results obtained always matched
the one obtained using Lily v.1.0.2 [11] and Acacia v.0.3.9.9 [4]. For the spec-
ifications found to be realisable, we used NuSMV for verifying the generated
models. NuSMV never found a counter-example.

C Some notes on the content of this tool paper

Operator precedences: Other synthesis tools like Acacia and Lily use a
subset of PSL as their input language. We decided not to do so as we are not
aware of a formal description document for PSL that is publicly available. The
book typically referred to in this context [10] does not provide a truly formal
semantics and clear operator precedences. As we are also aware of differences in
the operator precedences between different LTL-to-Büchi tools, we decided to
circumvent all these problems by requiring the user to make everything explicit
in the XML file. Even if we stated the precedences in the documentation of the
tool, users would still sometimes accidentally assume other precedence rules that
they are familiar with from other tools, which leads to problems that are very
hard to find.

Assumptions→Guarantees specification form: We assumed that the spec-
ifications given consist of sets of assumptions and guarantees. This is a common
choice in the literature, see, e.g., [1, 9, 12].

On comparing against Acacia: The tool Acacia has a lot of options, many
of them optimised for specifications which are big conjunctions of LTL formulas
parts (so there are no assumptions, or these are made local to the guarantees).
As our specifications in this paper mostly have assumptions (and comparing
against all parameter settings is infeasible for a short tool paper), we only used
the default settings.

In the experimental evaluation, we used Acacia with parameters that made
the tool only check for realisability/unrealisability. This is justified by the fact



that for the techniques involved there, implementation extraction is very fast
and thus no big deal anyway.

The computation model used: The tool Unbeast uses a Mealy-type com-
putation model, i.e., we assume that in every computation cycle, first the input
to the system arrives and then the system can choose the output. Details and a
justification are provided in [3].

Syntactic safety detection: In the main part of the paper, we describe a tech-
nique to detect some cases of pathological safety. Note that the LTL-to-Büchi
converter ensures that maximal strongly connected components without accept-
ing states are already pruned away. Otherwise using the algorithm described
would sometimes lead to incorrect results.

Comparison against version 0.5 of Unbeast: In [3], we reported bench-
mark results on the same case study as here. The experimental evaluation in
that paper was based on an earlier version of our tool (which was not mentioned
at all in [3]). The following new features have been added in the meantime:

– A simulator for unrealisable and realisable specifications
– Variable grouping in the BDD order (which has an impact on the perfor-

mance)

Differences in the experimental evaluation in comparison to [3]: In
[3], we did not consider that case that only realisability checking is to be per-
formed. In order to give the reader a better impression of the difficulty of actually
extracting an implementation, we decided to do so in this tool paper.

D Example input file

The following example specification describes a two-process mutex:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE SynthesisProblem SYSTEM "SynSpec.dtd">

<SynthesisProblem>

<Title>A mutex</Title>

<Description>A not quite complex example</Description>

<PathToLTLCompiler>ltl2ba-1.1/ltl2ba</PathToLTLCompiler>

<GlobalInputs>

<Bit>Request0</Bit>

<Bit>Request1</Bit>

</GlobalInputs>

<GlobalOutputs>

<Bit>Grant0</Bit>

<Bit>Grant1</Bit>

</GlobalOutputs>



<Assumptions>

<LTL><G><F><Not><Var>Request0</Var></Not></F></G></LTL>

<LTL><G><F><Not><Var>Request1</Var></Not></F></G></LTL>

</Assumptions>

<Specification>

<LTL><G><Or><Not><Var>Grant0</Var></Not>

<Not><Var>Grant1</Var></Not></Or></G></LTL>

<LTL><G><Or><Not><Var>Request0</Var></Not><F>

<Var>Grant0</Var></F></Or></G></LTL>

<LTL><G><Or><Not><Var>Request1</Var></Not><F>

<Var>Grant1</Var></F></Or></G></LTL>

</Specification>

</SynthesisProblem>

References

9. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Interactive presentation: Automatic hardware synthesis from specifications: a case
study. In: DATE. (2007) 1188–1193

10. Eisner, C., Fisman, D.: A Practical Introduction to PSL (Series on Integrated
Circuits and Systems). Springer (2006)

11. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD. (2006)
117–124

12. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: VMCAI.
(2006) 364–380


