
Synthesis with Identifiers?

Rüdiger Ehlers1,2,3, Sanjit A. Seshia1, and Hadas Kress-Gazit2

1 University of California at Berkeley, Berkeley, CA, United States
2 Cornell University, Ithaca, NY, United States

3 University of Kassel, Germany

Abstract. We consider the synthesis of reactive systems from specifications with
identifiers. Identifiers are useful to parametrize the input and output of a reactive
system, for example, to state which client requests a grant from an arbiter, or the
type of object that a robot is expected to fetch.
Traditional reactive synthesis algorithms only handle a constant bounded range
of such identifiers. However, in practice, we might not want to restrict the number
of clients of an arbiter or the set of object types handled by a robot a priori. We
first present a concise automata-based formalism for specifications with identi-
fiers. The synthesis problem for such specifications is undecidable. We therefore
give an algorithm that is always sound, and complete for unrealizable safety spec-
ifications. Our algorithm is based on computing a pattern-based abstraction of a
synthesis game that captures the realizability problem for the specification. The
abstraction does not restrict the possible solutions to finite-state ones and captures
the obligations for the system in the synthesis game. We present an experimental
evaluation based on a prototype implementation that shows the practical applica-
bility of our algorithm.

1 Introduction

Automatically synthesizing reactive systems from their specifications is an ambitious,
yet worthwhile challenge. The applicability of synthesis technology ranges from rapid
prototyping to specification debugging, which improves system designer productivity
and helps to find incorrect assumptions or forgotten requirements at an early stage in a
system development process.

Traditionally, the input and output signals of the systems that are computed in re-
active synthesis are purely boolean. If we are not interested in synthesizing hardware,
but rather software, this view is often not justified. For example, in a mutual exclusion
protocol, we might be getting requests for accesses to a shared resource from a group of
clients whose size is unknown a-priori. A robot that satisfies some mission specification
on the other hand might need to deliver a large variety of objects. In both cases, we are
dealing with identifier values that form part of the input or output of a reactive system.
For the mutual exclusion protocol, the identifiers represent client numbers, whereas for
the robot example, they encode the types of the objects that the robot has to deliver.

? This work was partially supported by NSF ExCAPE CCF-1139025/1139138. The first author
was also supported by the European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) / ERC grant agreement no. 259267.

2 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

q0 q1

q2 q3

true

rf /a := ri

¬gf ∨ gi 6= a

gf
gf

true

Fig. 1. An example specification (in form of a universal one-weak automaton) for a simple mu-
tual exclusion (mutex) protocol with the input variables rf (signaling that request is issued) and
ri (representing the identity of the request) and the output variables gf (signaling that a grant
is given) and gi (for the identity of the grant). The variables ri and gi hold values from the do-
main of identifiers, whereas rf and gf are boolean. The automaton models that all requests must
eventually be answered by a corresponding grant, and no two grants may be given in successive
computation cycles. Accepting states are doubly-circled. As the automaton branches universally,
it has to accept along all possible runs for a word to be accepted. Along a transition from q0 to q1,
we assign a value to variable a that captures that a request with id a = ri has been issued. In state
q1, a run then waits until the request is answered by a grant, at which point it ends. States q2 and
q3 ensure that no two grants may be given in successive transitions. All infinite runs for a word
must be accepting for the word to be contained in the language of the automaton. Any implemen-
tation satisfying this specification is infinite-state, as requests may come in faster than they can
be answered. Yet, the specification is realizable as there is no time bound on the answering time.

In this paper, we present an approach to synthesize reactive systems from specifi-
cations with identifier variables. We present a specification formalism that allows the
concise representation of requirements for systems that have identifier input and output
variables. By combining universal branching in word automata with identifier variables,
we obtain a powerful, yet semantically simple way of describing specifications for such
systems. Figure 1 shows an example of such a specification. Automata with universal
branching are well-studied in the scope of reactive synthesis as they are a simple, yet
expressive, specification model for reactive synthesis algorithms, and at the same time
do not blow up under conjunction [10, 12]. This is highly desirable as practical specifi-
cations describe sets of properties that a system under design all need to fulfill, which
are thus connected by conjunction.

The synthesis algorithm that we propose for such specifications exploits the con-
ciseness of our formalism, as it can handle the identifiers in specifications in a symbolic
way. The algorithm is sound, but not complete, as the synthesis problem from speci-
fications with identifiers is undecidable. Additionally, our algorithm is always able to
detect unrealizable safety specifications.

The core idea of our algorithmic solution is to build a pattern-based abstraction of
an infinite realizability checking game in which the winning strategies represent correct
implementations. The patterns describe constraints over run points, i.e., combinations
of states in the universal specification automaton that we can be in (along with the cor-
responding variable valuations) at the same time. In this manner, we reduce dealing with
the infinite concrete realizability game to solving a finite abstract realizability game. In
the abstract game, the system player makes promises about how it can control the evo-

Synthesis with Identifiers 3

lution of a play in the concrete game. In order to compute the possible transitions in the
abstract game, we solve a finite-step subgame between an environment player (that sets
the next input to the system) and a system player (that sets the next output of the system)
in which the system player tries to prove that it can keep its promises. We apply a solver
for quantified boolean formulas (QBF) with free variables (ALLQBF) in order to find a
compact representation of all moves of the two players in the abstract realizability game
that allow the system player to win the finite-step subgame. Solving the abstract real-
izability game can then be performed using a classical generalized Büchi game solving
algorithm [4]. By starting with a small set of patterns, and gradually letting this set grow
whenever the abstract game is lost by the system player, we can balance the precision
of the abstract game against the computational burden of building it. Often, a small set
of patterns suffices, and we exploit this fact in our construction.

The implementations synthesized with our approach are not necessarily finite-state.
For example, for the specification given in Figure 1, any implementation satisfying it
needs to be infinite-state, and our synthesis algorithm finds one. This distinguishes our
approach from classical reactive synthesis methods and classical abstraction-based so-
lution methods for infinite games [7], which can only find finite-state implementations.
An implementation that is the outcome of our synthesis approach uses queues as pri-
mary datatype to store information about obligations to be fulfilled. As an example, for
the specification in Figure 1, the queue would be used to store all requests not having
been served yet. While an infinite-state strategy can surely not be exactly implemented
with actual hardware, our synthesized implementations use the available memory in a
conservative manner, and are thus implementable in practice for input sequences that
do not enforce excessive memory usage.

We start by describing our specification modeling framework in Section 2, followed
by a theoretical analysis of the corresponding synthesis problem in Section 3. Then, we
show how to synthesize from specifications with identifiers with a sound algorithm in
Section 4. This algorithm is also guaranteed to detect unrealizable safety specifications.
We give some experimental results on a prototype implementation of our approach in
Section 5 and conclude with a summary in Section 6.

1.1 Related Work

The benefit of abstracting from concrete data values is well-known in the scope of veri-
fication. Wolper [15] defines the notion of data-independence, which intuitively means
that the control flow of a program only depends on the equalities of the data items han-
dled by the program. He shows how data-independence eases the verification of a large
class of properties. His idea is integral to our synthesis approach as all implementations
we compute are data-independent.

Previous work on synthesizing systems with infinite input and output domains only
considered specification languages that did not permit connecting the values from the
infinite domain over time, but rather only allowed local comparisons in every time step.
Cheng and Lee [5] present a synthesis approach for cyber-physical systems in which
linear-time temporal logic (LTL) as specification logic is extended to allow comparisons
of continuous variables such as sensor values as literals. Tabuada [13] considers similar
specifications and describes techniques to synthesize systems that not only meet their

4 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

specification, but do so in a way that is robust to pertubations of the input or output
values.

The problem of synthesizing systems with infinite input and output domains is re-
lated to solving games with an infinite state space and synthesizing arbitrarily scalable
systems. Dimitrova and Finkbeiner [6] discuss the solution of infinite incomplete-in-
formation games. They present an abstraction-refinement approach that can find finite
winning strategies in such games if these exist. Their approach is not suitable for real-
izable specifications that have no satisfying finite-state implementation.

Walukiewicz considers the problem of solving parity games over a push-down struc-
ture [14]. Winning strategies in such games can be infinite-state, just like in our setting.
As push-down games extend the expressible specification by non-regular properties
rather than allowing an infinitely-sized input/output alphabet, they are not applicable in
the settings dealt with in this paper.

Attie and Emerson describe methods to synthesize arbitrarily scalable systems [1].
Starting with a specification, they propose to synthesize a pair of processes that can then
be instantiated as often as needed, and the composition of these processes still satisfies
the original specification. As the number of allowed instantiations is not bounded, there
is no bound of the state space of the product process. Their composed processes can
deadlock in some situations, which is undesirable. Jacobs and Bloem [8] consider the
same problem for ring architectures of processes. They show that task to be undecidable
for specifications in linear-time temporal logic (LTL), but give a sound semi-algorithm.
In contrast to our synthesis algorithm, all of these approaches to synthesize arbitrarily
scalable systems cannot deal with specifications that always need an infinite number of
states in their implementation regardless of the number of process instantiations, and
can also not deal with input/output alphabets with an infinite domain.

2 Modeling Parametrized Specifications

Basics: In this work, we consider reactive systems with data, for which the data do-
mains for all input and output signals are either boolean or identifiers. Our reactive
system thus has an input signal set I = IB] II that consists of boolean input signals
IB and signals for reading identifiers II , and an output signal set O = OB] OI that
can be decomposed in the same manner. We call (IB , II ,OB ,OI) the interface of a
reactive system. We denote by ID the (infinite) set of identifiers; however, we note that,
for the scope of this paper, it is not relevant to fix a concrete domain ID, as we consider
equality checks as the only operation on them. In our examples, we always use integers
for simplicity. The system runs in discrete time steps, called computation cycles, for an
indefinite number of steps, which we abstract from by considering infinite runs of the
system. Such a run is formally given as a wordw = w0w1w2 . . ., where for every i ∈ IN,
we have wi ∈ IS×OS for the input assignment set IS = (II → ID)×(IB → B) and
the output assignment set OS = (OI → ID)× (OB → B). For example, the following

Synthesis with Identifiers 5

word represents a run of a reactive system for the specification in Figure 1:

w =

rf 7→ false
ri 7→ 0
gf 7→ false
gi 7→ 0

rf 7→ true
ri 7→ 5
gf 7→ true
gi 7→ 5

rf 7→ true
ri 7→ 3
gf 7→ false
gi 7→ 0

rf 7→ false
ri 7→ 0
gf 7→ true
gi 7→ 3

 . . . (1)

Formally, we can specify the behavior of a reactive system by a function f : IS+ →
OS that maps input histories to an output to produce next. If for a word w, we have that
for all i ∈ IN, f(w0|IS w1|IS . . . wi|IS) = wi|OS , then we say that w is a run of f .

Specifications: Given some reactive system interface (IB , II ,OB ,OI), a specifica-
tion is a language L ⊆ (IS × OS)ω . Given some reactive system behavior function
f : IS+ → OS, we say that f satisfies L if all runs of f are contained in L. The
realizability problem for a language L is to check for the existence of such a behavior
function f , and the synthesis problem is to obtain a representation of such a function f
(if it exists).

Universal semi-one-weak automata for specifications: To represent specifications over
words of infinite length (and an infinite number of identifiers to choose from) in a
finitely-representable way, we use universal semi-one-weak automata with identifier
variables. Formally, for some system interface (IB , II ,OB ,OI), such an automaton is
given as a tuple A = (Q,S, δ, qinit , F), where Q is a finite set of states, S : Q → 2Var

is a scoping function that describes which variables are defined in which states for some
domain of identifier variables Var, qinit ∈ Q is the initial state such that S(qinit) = ∅,
F is a set of accepting states, and δ is a finite set of transitions.

Every transition is of the form (q, C,A, q′), where q ∈ Q is a source state, q′ is
the target state, C is a set of conditions, and A is a set of assignments. A condition is
either of the form v1 6= v2, v1 = v2, b = true, or b = false for some b ∈ IB] OB
and v1, v2 ∈ (S(q)] II] OI). An assignment is of the form (v, u), where v ∈ Var,
v ∈ S(q′) \S(q), and u ∈ II]OI ; intuitively, u is copied into variable v. For a transi-
tion to be valid, we require that S(q′) = S(q)]{v ∈ Var | ∃t ∈ II]OI : (v, t) ∈ A},
and every variable may only occur in A once. Along a sequence of transitions in the
automaton, every variable may only be assigned once, and the aim of introducing a
scoping function into the automaton definition is to make explicit which variables are
defined in which states.

The automata that we are concerned with in this paper are semi-one-weak, i.e., are
like weak automata for all accepting states, and are one-weak for all non-accepting
states, which we also call rejecting states in the following. Formally,A is weak if we can
partitionQ into a finite number of subsets that are partially ordered by some comparator
≤Q such that every subset contains only accepting states or only non-accepting states,
and for every transition (q, C,A, q′) ∈ δ, for Kq being the partition element that q
is in, and Kq′ being the partition element that q′ is in, we have Kq ≤Q Kq′ . For our
semi-one-weak automata, we furthermore require that every rejecting state is one-weak,
i.e., it is the only element in its partition. Informally, this means that the only looping
paths in the automaton that contain a rejecting state consist solely of self-loops in the
rejecting state.

6 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

Words w = w0w1 . . . ∈ (IS × OS)ω induce runs in the automaton, where every
point in the run is a combination of a state ofA that the run is in, and a variable valuation
for the variables in the scope of the state. Formally, every run point is thus an element of
Π = {(q, f) ∈ Q×(Var ⇀ ID) | domain(f) = S(q)}, and we say that some sequence
π = π0π1 . . . πn ∈ Π∗ is a finite run if π0 = (qinit , ∅) and for all i ∈ {0, . . . , n − 1},
we have (πi, wi, πi+1) ∈ δΠ , and that some sequence π = π0π1 . . . ∈ Πω is an infinite
run if π0 = (qinit , ∅) and for all i ∈ IN, we have (πi, wi, πi+1) ∈ δΠ . In both cases,
the relation δΠ ⊆ Π × (IS × OS) × Π describes the possible transitions in a run
on a semantic level. It is defined to consist of all tuples ((q, f), x, (q′, f ′)) such that
there exists some automaton transition (q, C,A, q′) such that for all c ∈ C, we have
(f, x) |= c, and f ′ = f ∪ {(v 7→ x(m)) | (v,m) ∈ A}. We say that a run of A is
accepting if for some q ∈ F , there are infinitely many indices i such that πi = (q, f)
for some variable assignment f or if the run is finite. We say that A accepts a word w
if all runs for w are accepting.

To simplify the presentation, we also represent semi-one-weak automata with IDs
graphically as shown in Figure 1. Accepting states (i.e., those in F) are drawn doubly-
circled. Transitions are depicted as arrows, labeled by the conditions and actions. For
example, the arrow from state q0 to q1 in the figure is formalized as (q0, {rf = true},
{(a, ri)}, q1), whereas the self-loop on state q1 actually represents two transitions,
namely (q1, {gf = false}, ∅, q1) and (q1, {gi 6= a}, ∅, q1).

3 An Analysis of the Synthesis Problem

We start our analysis of the synthesis problem for specifications with identifiers on a
theoretical level. After some basic definitions, we define synthesis games and estab-
lish determinacy of the games. Finally, we derive the undecidability of the synthesis
problem for specification with identifiers.

3.1 Basic Definitions

Let w = w0w1 . . . ∈ (IS × OS)ω be a word and A = (Q,S, δ, qinit , F) be an au-
tomaton over IS × OS. We can arrange all runs π that correspond to w and A in a
run tree. Formally, such a run tree is given as a tuple 〈T, τ〉 with a prefix-closed set T
and a function τ : T → Π that maps every tree node to a state and a variable valuation
at this state. Figure 2 shows a graphical representation for a run tree for the automa-
ton from Figure 1 and the example word in Equation 1. We obtain 〈T, τ〉 from A by
letting T be the smallest subset of Π∗ that contains (qinit , ∅) and such that for every
π0π1 . . . πn ∈ T , we have that π0π1 . . . πnπn+1 ∈ T for precisely those πn+1 ∈ Π
with (πn, wn, πn+1) ∈ δΠ . For all π0π1 . . . πn ∈ T , we set τ(π0π1 . . . πn) = πn.

We say that a run tree is accepting if for every infinite sequence π = π0π1 . . . ∈ Πω ,
if for all i ∈ IN, we have π0π1 . . . πi ∈ T , then there exist infinitely many i ∈ IN such
that for τ(π0π1 . . . πi) = (q, f), we have q ∈ F . By definition, for a word, there exists
an accepting run tree if and only if the word is accepted.

Synthesis with Identifiers 7

q0 q0

q2

q1, {a 7→ 5}
q0

q1, {a 7→ 5}
q1, {a 7→ 3}

q0

q1, {a 7→ 5}

q0

q2

. . .

. . .

. . .

. . .

Fig. 2. An example run tree, growing from left to right.

3.2 Synthesis Games

A commonly used formalism to study the synthesis problem are two-player games.
Formally, a game is defined as a tuple G = (V 0, V 1, Σ0, Σ1, E0, E1, vinit ,F). We
have two players, called player 0 and player 1. Every player p has a set of vertices V p,
a set of actions Σp, and an edge function Ep : V p × Σp → V (1−p). Without loss of
generality, we assume that the initial position vinit is an element of V 0. For the scope of
this paper, the winning condition F is defined as a set of subsets of the edges of player
1, i.e., F ⊆ 2V

1×Σ1

.
In a synthesis game, we declare one player to be the system player, whereas the other

player is the environment player. The system player tries to win the game according to
the winning condition F , whereas the environment player tries to prevent this.

During the course of the play, the two players alternate in making their moves. They
do so by choosing from their respective sets of actions. Afterwards, the position in the
game is updated according to the player’s edge function, and the play continues. Since
the edge functions are required to be total, the play of the game never ends. During the
course of the play, the moves of the two players can be collected into their decision
sequence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1ρ

0
2 . . ., in which for every i ∈ IN and p ∈ {0, 1}, we have

ρpi ∈ Σp. The corresponding play of the game represents the sequence of positions
visited when the two players choose their actions as described in ρ. Formally, a play
π = π0

0π
1
0π

0
1π

1
1π

2
0 . . . corresponding to ρ is defined as π0

0 = vinit and for every i ∈ IN
and p ∈ {0, 1}, we have π1−p

i+p = Ep(π
p
i , ρ

p
i). We say that a play is winning for player

1 if for all sets of X ∈ F , player 1 chooses edges in X infinitely often, i.e., there are
infinitely many indices i ∈ IN such that (π1

i , ρ
1
i) ∈ X . Such a winning condition is

typically called transition-based generalized Büchi for games in which V0 and V1 are
finite.

Any of the two players in the game can play a strategy. Formally, a strategy for
player p ∈ {0, 1} is a function fp : (Σ1−p)∗ → Σp. We say that a decision sequence
ρ = ρ00ρ

1
0ρ

0
1ρ

1
1ρ

0
2 . . . is in correspondence to some strategy fp if for all i ∈ IN, we have

ρpi = fp(ρ1−p0 ρ1−p1 . . . ρ1−pi−1+p). If for some strategy fp, all decision sequences that are
in correspondence to fp induce plays that are winning for player p, then we say that fp

is a winning strategy for player p. We also say that player p wins the game whenever it
has a winning strategy.

The fact that strategies in games and implementations of systems with identifiers
look very similar is no coincidence, as we want to use games to solve synthesis prob-
lems – we build games such that the winning strategies for the system player in the

8 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

games are in fact the implementations that we are searching for. Starting from a uni-
versal semi-one-weak automaton A = (Q,S, δ, qinit , F), taking player 1 as the system
player, and calling player 0 the environment player, we build a game G = (V 0, V 1, Σ0,
Σ1, E0, E1, vinit ,F) such that Σ0 = IS and Σ1 = OS. We furthermore define:

V 0 = 2Π

V 1 = V0 × IS
E0(v, x) = (v, x) for all v ∈ V 0, x ∈ Σ0

E1((v, x), y) = {(q′, f ′) ∈ Π | ∃(q, f) ∈ v, ((q, f), (x, y), (q′, f ′)) ∈ δΠ}
for all v ∈ V 0, x ∈ Σ0, y ∈ Σ1

vinit = {(q0, ∅)}

F =
⋃

(q,f)∈(Q\F)×(Var→ID)

{{(X,x, y) ⊆ 2Π × IS ×OS |

(q, f) /∈ X ∨ ((q, f), (x, y), (q, f)) /∈ δΠ}}

In this game, every position in V 0 intuitively describes a set of run points in the run tree,
and E0 and E1 ensure that whenever the two players construct some prefix decision se-
quence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1 . . . ρ

0
kρ

1
k, then for v being the position reached in the game along

a play for this sequence, v is precisely the set of run points that are at level k in the run
tree for a word starting with (ρ00, ρ

1
0)(ρ

0
1, ρ

1
1) . . . (ρ

0
0, ρ

1
0)(ρ

0
k, ρ

1
k). Thus, we can intu-

itively read off the complete run tree for a decision sequence from its induced play. The
winning condition F then characterizes the set of run trees for which along no branch
we eventually get stuck in a run point for a rejecting state. This ensures that precisely the
decision sequences that have winning plays in the game are accepted by the specifica-
tion automaton, and thus the game can be called the synthesis game forA. Note that we
used the semi-one-weakness of our specification automaton and the fact that variable
values never change along a run of the automaton in the definition of the winning condi-
tion. Without these facts, the winning condition would need to trace the history of a run
point in order for the winning plays in the game to represent the traces that satisfy the
specification from which we built the game. The winning condition could not be simply
concerned with the edges that are taken infinitely often along a play in the game then.

Lemma 1. Let A be a specification automaton over some interface (IB , II ,OB ,OI),
and G be a game built from A and the interface according to the definitions above.
If and only if G is winning for player 1, there exists an implementation with interface
(IB , II ,OB ,OI) all of whose runs are in the language described by A. Furthermore,
the winning strategies for player 1 in G are such implementations.

Determinacy of synthesis games: An important question in game theory is whether
a class of games is determined, i.e., whether any game in the class admits a winning
strategy for one of the players. By the connection between semi-one-weak automata
with identifiers and their corresponding games established by Lemma 1, determinacy
of all games of the form described above implies that our synthesis problem is actu-
ally well-posed: for every specification, there is either an implementation, or we can
(theoretically) prove that none exists.

Synthesis with Identifiers 9

Martin [11] showed that every two-player game for which the winning plays for one
of the players form a Borel set is determined. This argument is not directly applicable
to the type of games built here, as the set of Borel sets is only closed under countable
unions/set intersections, but as the identifier domain is infinite, the set of positions in
synthesis games can be non-countable. However, note that any identifier value used as
input or output of the two players that did not yet occur in the prefix decision sequence
in a game always has the same effect on whether a play is going to be winning or not.
Thus, we can restrict both players to use fresh identifiers in a certain order (e.g., in
increasing order when using integer identifiers) without changing any property of the
game, except for the fact that in every position, the two players now only have a finite
set of possible moves. This makes the set of positions in the game countable and it can
then be shown that the winning plays for any of the players is a Borel set.

Undecidability of synthesis from semi-one-weak automata with identifiers: Despite
the simplicity of our specification framework for systems with identifiers, its synthe-
sis problem is unfortunately undecidable. Intuitively, the reason is that we can translate
a Turing machine description to a specification that is unrealizable if and only if the Tur-
ing machine halts on the empty input tape – the environment in this context provides a
sequence of identifiers that serve as addresses on the tape, and the system is required to
output the sequence of Turing tape computations along with the Turing machine state.
By requiring that an accepting Turing machine state must never be reached, we connect
the realizability problem with Turing machine acceptance.

Theorem 1. Realizability checking for specifications expressed as semi-one-weak uni-
versal automata with identifiers is undecidable.

Proof. See appendix.

4 Synthesis Algorithm

As the realizability problem for specifications represented as semi-one-weak universal
automata with identifier variables is undecidable, we can only rely on sound, but in-
complete, methods to perform synthesis for such specifications. The main idea pursued
in the following is to build a finite game that abstracts from details in the synthesis
games defined in Section 3.2. The fact that the only data type we consider in this paper
are identifiers comes to our rescue at this point, as the single operation that needs to be
supported for them is checking for equality. To characterize a situation in the game, it
thus suffices to state the equalities of the variable valuations in different run points by
which a game position is labeled. We combine this idea with sound overapproximation
of game situations to ensure the correctness of the computed implementations.

4.1 Patterns

Let A be a universal automaton with identifiers, and G be the game built from A ac-
cording to the construction from Sect. 3.2. If for a position v ∈ V0, changing the initial

10 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

q0 q1 q2

true

true/a := ri

¬gf ∧ ¬ge

gf ∧ ¬ge ∧ gi 6= a

true

ge/a := ri

Fig. 3. Example specification for an interface (IB , II ,OB ,OI) with IB = ∅, II = {ri}, OB =
{ge, gf}, and OI = {gi}

position to v leads to the game being losing for the system player, then v is called a bad
position, as once the game reaches v in a play, the system player has no strategy to win.
Note that the definition of the games considered here makes sure that if some position
v is a bad position, then some other position v′ that we can obtain by taking a bijective
function g : ID → ID, and replacing every identifier i in v by g(i), is also a bad posi-
tion, as the concrete values of the identifiers do not matter in our setting, and only their
equivalences are of importance. This observation gives rise to the idea of abstracting
positions into patterns.

Consider the example specification in Figure 3. In the game that is built according to
the construction from Sect. 3.2 from the specification, the position {(q0, ∅), (q1, {a 7→
1}), (q1, {a 7→ 2})} is losing for the system player. This can be seen from the fact that
from that position, either gf or ge have to be set to true by the system player in order
to eventually leave the run points (q1, {a 7→ 1}) and (q1, {a 7→ 2}), with q1 being
rejecting. Since choosing ge = true would lead to the transition from q0 to q2 being
taken, and choosing gf = true would lead to taking the transition to q2 as gi cannot be
1 and 2 at the same time, we cannot avoid transitioning to q2, from where we reject a
suffix run of the automaton. By the fact that we could replace the concrete identifiers by
other values that keep the relationship between the items, and obtain an equally losing
position, we call P = {(q0, ∅), (q1, α1), (q1, α2)} a bad pattern, as every position that
represents an instantiation of this pattern (by substituting the variables α1 and α2 by
concrete, distinct identifiers values) is losing for the system player.

Note that bad patterns describe sufficient conditions for losing a game. If P is a
bad pattern in a game, then the pattern tells us that any position for which we find an
instantiation of the bad pattern in its run point set is losing. This way, for example,
also the position {(q0, ∅), (q1, a 7→ 12), (q1, a 7→ 42), (q1, a 7→ 123)} is losing, as a
bad pattern matches a subset of its run points. This stems from the fact that positions
are characterized by the run points for runs in a universal automaton, and the more
combinations we have, the more properties does the suffix decision sequence have to
fulfill in order for the overall decision sequence to be accepted by the automaton.

4.2 Abstract Games

To solve the synthesis problem for a universal semi-one-weak specification automaton
A = (Q,S, δ, qinit , F) with identifiers, we take the concrete synthesis game G built
from the specification according to Sect. 3.2, and build an abstract game GA from G
that is finite, and thus can be solved by practical game solving algorithms. Every posi-
tion in the abstract game is labeled by a set of forbidden patterns. The abstract position

Synthesis with Identifiers 11

then represents all concrete game positions for which we cannot instantiate any forbid-
den pattern in the run points by which the concrete game position is labeled. In every
abstract position, we require the system player to have suitable next moves for every
corresponding concrete position. Thus, if the system player can win the game, we know
that the specification is realizable.

Patterns can be arbitrarily large, as they can have an arbitrary number of elements.
To obtain a finite number of game positions with this idea, we only take patterns from
a finite base set of patterns M into consideration. We can, for example, define M
to be the set of all patterns with ≤ b elements for some b ∈ IN. With a restricted
base set of patterns, our game is only approximate. To achieve the soundness of a
synthesis approach based on this idea, we have to ensure that the approximation does
not restrict the environment player in any way, and can only put the system player in a
disadvantage, as we will do below.

Having only a finite number of positions however does not automatically make the
game finite. In fact, the action sets in G are also infinite. As a remedy, in our abstract
game, the two players make abstract decisions for their identifier and boolean signals.
We use an abstraction that is both simple and powerful: the environment player chooses
a subset of the specification automaton transitions as its move, while the system player
declares the next forbidden patterns and the states for which it wants to make progress.

The idea here is to let the two players announce the effect of their choice of moves in
the synthesis game rather than giving concrete identifier values, i.e., which automaton
transitions are enabled by the move of the environment, and what the successor pattern
set is. This idea reduces the two player’s decisions to a finite domain.

Recall that for a transition (q, C,A, q′) ∈ δ to fire, all constraints in C have to be
fulfilled. We call a transition semi-enabled (by the environment player) for some choice
of boolean and identifier input signal valuations if all constraints over the input signals
are satisfied. For an environment player’s move to be legal from a position v in the
abstract game GA, there has to exist some position in G that satisfies all of the constraints
of the patterns by which v is marked and some identifier input signal valuation such that
the transitions chosen by the player are semi-enabled by the input signals.

After the environment player has made its move, it is the system player’s task to (1)
choose a set of successor patterns and (2) declare for which rejecting states it wants to
perform progress on leaving them. We say that a state is left at a point in the run of the
automaton if either the run is not in that state at the point considered, or the state’s self-
loop is not taken. Consider for example the excerpt from the synthesis game depicted in
Figure 4 that we built from the specification in Figure 1. The system player, who owns
the left-most position in the figure, can enforce to leave run point (q1, {a 7→ 3}) by
choosing gf ∧ gi = 3 as the next move, and it can enforce to leave run point (q1, {a 7→
5}) by choosing gf ∧ gi = 5. Thus, it can declare to be able to make progress on
leaving (any run point for) state q1 and to transition to a position in which the patterns
{(q1, {a 7→ α1}), (q1, {a 7→ α2})} and {(q3, ∅)} cannot be instantiated.

The system player has to play conservatively, i.e., choose its move while taking into
account every concrete position that satisfies the constraints imposed by the patterns in
v and any of the environment player’s concrete input signal values for which the envi-
ronment player’s chosen transition set is valid. In all of these possible cases, there has

12 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

. . .

. . .

({(q0, ∅), (q1, {a 7→ 3}), (q1, {a 7→ 5})},
{rf 7→ false, ri 7→ 123})

{(q0, ∅), (q1, {a 7→ 3}), (q2, ∅)}

{(q0, ∅), (q1, {a 7→ 5}), (q2, ∅)}

{(q0, ∅), (q1, {a 7→ 3}), (q1, {a 7→ 5})}

gf ∧ gi = 3

gf ∧ gi = 5

¬gf ∧ gi = 4

Fig. 4. An excerpt from a concrete synthesis game. Positions of player 0 are drawn as ellipses,
while the position of player 1 is denoted as a rectangle

to be some concrete move of the system player that ensures that the resulting successor
position in the concrete game satisfies the patterns declared by the player, and at the
same time, progress can be performed by leaving any run point for the states declared.

Let us now formalize GA using these ideas. The specification automaton A is given
for some interface (IB , II ,OB ,OI), and we have a finite set of base patterns M. A
pattern is a set of elements of Θ, where Θ = Q × (Var ⇀ {αi}i∈IN) is the set of
pattern atoms. Without loss of generality, we assume that for every pattern atom (q, f),
the domain of f is S(q), and for all P ∈ M, the set {i ∈ IN | ∃(q, f) ∈ P, e ∈
S(q) : f(e) = αi} is of the form {0, 1, . . . , j} for some j ∈ IN. Formally, we define
GA = (V 0

A, V
1
A, Σ

0
A, Σ

1
A, E

0
A, E

1
A, v

init ,F) with the following properties (using the
function Post as a placeholder to be explained below):

V 0
A = 2M ∪ {⊥,>}
V 1
A = 2M ×Σ0

A

Σ0
A = 2δ

Σ1
A = 2M × 2Q\F

E0
A(v,X) = (v,X) for all v ∈ 2M, X ∈ Σ0

A

E1
A((v,X), (YP , YD)) = Post(v,X, YP , YD) for all (v,X) ∈ V 1

A, (YP , YD) ∈ Σ1
A

F = {V 1
A × 2M ×Hq | q ∈ (Q \ F),

Hq = {Q′ ⊆ Q \ F | q ∈ Q′}}
vinit =M\ {∅, {(q0)}}

The special positions > and ⊥ are declared to be winning/losing for the system player,
respectively, so that no successors positions of them need to be defined. All the work
in updating the position in the game is deferred to the function Post. Evaluating this
function is done in multiple steps. The first step is to check if the environment/input
player (player 0) chose a valid move, i.e., if there exists a concrete position that is
described by v for which the input player can semi-enable X . Otherwise, the move
makes no sense, and we transition to position >, which is a sink (i.e., has no outgoing
transitions) and represents that player 0 has made a faulty move.

Then, the Post operator checks the system player’s move. As the system player de-
clares which patterns should not be instantiable in the next concrete position and along
which run points it can promise progress, we move to position ⊥ whenever the system

Synthesis with Identifiers 13

player is promising too much. In particular, the system player should be able to keep
the promise for all position/concrete input combinations for which the environment
player’s move is valid. In all of these cases, there has to exist some concrete output that
leads to a position that does not allow to instantiate any of the promised patterns. At the
same time, the system player should be able to make progress with respect to any of the
promised run points without violating one of these promised patterns. More formally,
the Post function is defined as follows:

– We have Post(v,X, YP , YD) = > if there does not exist some P ⊆ Π and x ∈
II × IB such that:
• no pattern of v can be instantiated in P , and
• X is the set of transitions that are semi-enabled by P and x.

– We define Post(v,X, YP , YD) = ⊥ if for every P ⊆ Π and x ∈ IS such that
• no pattern of v can be instantiated in P , and
• X is the set of transitions that are semi-enabled by P and x,

we do not have that for every run point πD = (q, f) ∈ P with q ∈ YD, there
exists some y ∈ OS such that:
• no pattern in YP can be instantiated in {π′ ∈ Π | ∃π ∈ P : (π, (x, y), π′) ∈
δΠ}, and

• we have that {π′ ∈ Π | (πD, (x, y), π′) ∈ δΠ} is empty.
– We have Post(v,X, YP , YD) = YP in all other cases.

Theorem 2. Let A be a specification for some interface (IB , II ,OB ,OI), and GA be
the abstract game with initial state vinit built fromA. If GA is winning for player 1 from
vinit , then there exists an implementation f : IS∗ → OS such that all words w that
are runs of f are accepted by A.

Proof. To prove the claim, we show how f can be implemented from a strategy in
GA that is winning for player 1. We describe f as a program that maintains two data
structures: (1) the set of run points of A for the prefix of the decision sequence w
observed so far, and (2) a queue of run points over non-accepting states in which run
points for non-accepting states are queued. The implementation always keeps the set up-
to-date and uses the queue for scheduling which run points of non-accepting states are
to be left next. By cycling through all of them in the queue, it is ensured that we never
get stuck in one of these run points along w, so that w is accepted by A. Additionally,
f traces the current position p in GA.

Let f ′ be a strategy for player 1 to win GA from vinit . Our implementation f works
as follows: Whenever the implementation obtains a new next input x ∈ IB×II , it com-
putes the set of transitions X that the input x semi-activates from the current position
p. Let (YP , YD) be the move that f ′ performs for X from p. The implementation then
computes a concrete output that leads to leaving the first run point in the queue for a
state in YD. By the definition of Post, it is made sure that we can always find a concrete
output such that additionally, the successor run point set is allowed by YP . Note that
this computation can be performed in finite time, as we are only concerned with finite
sets.

As f ′ is winning, this means that for all non-accepting states q, we infinitely often
have q ∈ YD along the play. Thus, every run point for a non-accepting state is eventually
left, and for a semi-one-weak automaton A, this means that w is accepted by A. ut

14 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

4.3 Computing the Transitions in the Abstract Games

While the abstract games described above only have a finite number of positions and
thus can be analyzed by standard algorithms for generalized Büchi game solving [4],
we only shifted the problem of dealing with an infinite number of positions in the re-
alizability game to dealing with sets P ⊆ Π of run points with an unbounded size
in the definition of Post. To effectively compute Post in a practical realizability game
building algorithm, we have to reduce reasoning about these sets to efficiently decidable
problems. Note that if we manage to only reason about sets P of a bounded size, then
this already suffices – as only equality and inequality of identifier values matter, we can
then simply enumerate all possible equivalence relations between the identifier values.

So it remains to reduce reasoning about such sets P of unbounded size to rea-
soning about a bounded number of identifier values. First of all, consider checking
if Post(v,X, YP , YD) = > holds. We can restrict our search for P to sets of cardinality
|X|, as we only need at most one run point per transition in order to semi-enable it,
and having more run points only makes it harder to ensure that no pattern in v can be
instantiated in P . In fact, we can even restrict our search to having precisely one run
point (q, f) for every transition in X such that the transition starts from q.

Testing if Post(v,X, YP , YD) = ⊥ holds while only quantifying over finite sets
is a bit more difficult. We apply the following idea in order to avoid having to reason
over very large sets P in order not to sacrifice soundness. We again consider sets P of
cardinality |X| as above, and require that for every concrete input x ∈ IS such that
X is the set of transitions activated from P and for every run point (q, f) in P with
q ∈ YD, there exists a concrete output y ∈ Y such that the run point (q, f) is left under
(x, y). Additionally, we quantify over all run point sets P ′ of size bmax , where bmax is
the largest size of a pattern inM, and require that from the concrete position P ′, we
do not reach a position through (x, y) in which some pattern in YP can be instantiated
if P ∪ P ′ does not violate a pattern in v and if not more than |X| transitions are semi-
enabled from P ∪ P ′ for X . The idea here is that the system player has to come up
with a move that allows leaving any possible run points for the non-accepting states
declared in YD and that is robust with respect to adding more run points. In a sense, we
hide certain run points from the system player, but the system player knows already the
patterns that cannot be instantiated in the current concrete position. This allows us to
quantify only over sets of size bmax in P ′. If the system player can choose y such that
adding more “surprise” run points does not let it exceed YP after the next transition,
then the system player has shown that it can make a robust next choice to hold the
progress promise YD and the successor position promise YP after the current round.
We only need to consider at most bmax predecessor run points for this check as for no
pattern, we need more than bmax run points before a transition in order to violate it
after a transition. By letting player 1 fix its choices before the “surprise” run points are
chosen, we only have to quantify over elements in P ′ once for any possible pattern in
YP that can potentially be instantiable in the concrete game position after the transition.

As a summary, we use the following finite-step game for testing if
Post′(v,X, YP , YD) = ⊥ holds, where Post′ denotes the approximate version of Post
implementing the ideas from above:

Synthesis with Identifiers 15

1. First, the environment player chooses some run points P (one for each element in
X) and concrete input x such that x semi-enables the transitions in X .

2. Then, the environment player chooses some run point (q, f) ∈ P with q ∈ YD
along which the system has to make progress (only if YD 6= ∅).

3. It is then the system player’s turn to choose some concrete output y that leads to
leaving the run point chosen by the other player (if any). The environment player
wins if this is not possible.

4. Finally, the environment player picks bmax additional run points P ′. If any pattern
of YP can be instantiated in {π′ ∈ Π | ∃π ∈ P ∪ P ′ : (π, (x, y), π′) ∈ δΠ} while
no pattern in v is instantiable in P ∪P ′ andX semi-enables the transitions inX for
x from P ∪ P ′, the environment player wins. Otherwise the system player wins.

4.4 Applying an (ALL)QBF Solver for Efficient Reasoning in Practice

After we have reduced computing the Post′ function (i.e., our approximate version
of Post) to a problem over finitely many elements in the previous subsection, it
makes sense to discuss how to compute Post′ in practice. Observe that testing iff
Post′(v,X, YP , YD) = ⊥ holds for some values of v, X , YP , and YD is the most
difficult step and can be formulated as the finite-step game given above. This fact sug-
gests that using a solver for quantified boolean formulas (QBF) is reasonable. We can
encode the boolean input and output variables in x and y as simple boolean values.
For the identifiers involved in the finite-step game, let C = {c0, c1, . . . , cn} be the
set of identifier variables in the run points and input and output signals involved, and
c0, c1, . . . , cn be the order in which they are introduced. We reserve a family of boolean
variables {eij}ci,cj∈C as an equality matrix between them that represents which iden-
tifier variables point to the same identifier. As equality is an equivalence relation, the
matrix {eij}ci,cj∈C must represent such a relation. We assign the task to keep the matrix
representing an equivalence relation to the two players in the finite-step game; when-
ever a player introduces a new variable ck for 0 ≤ k ≤ n in the game, the player must
assign values to {eik, eki | 0 ≤ i ≤ k} such that {eij}i,j∈{0,...,k} is still an equivalence
relation.

We encode the QBF instance from the point of view of the system player that asks
if for some given v andX , there exists some choice for YP and YD such that the system
player wins the finite-step game explained above. This has the advantage that we can
model YP and YD using free variables and apply an ALLQBF [2] solver to compute
a boolean formula g that represents all valuations of the free variables that make the
quantified boolean formula satisfied. From g, we can then easily enumerate all Pareto-
optimal moves using a satisfiability (SAT) solver. We call a valuation of YP and YD
Pareto-optimal if no element can be added to YD and no element can be added to YP
such that the resulting valuation of the free variables in the QBF instance is still a model
of it. Note that for building the abstract realizability game GA, we only have to consider
the Pareto-optimal choices of the system player as playing non-optimal moves does not
help the system player in any way.

For computing the possible values for X that do not let the environment
player lose the finite-step game from some position v (i.e., computing whether
Post′(v,X, YP , YD) = > holds for arbitrary YP and YD), we can apply the same

16 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

equality matrix encoding. However, this time, we only need a SAT solver as there is
no quantifier alternation. Again, we only enumerate the Pareto-optimal choices, i.e., the
largest elements X that avoid having Post′(v,X, YP , YD) = > .

4.5 Completeness for Unrealizable Safety Specifications

Assume that the specification we are concerned with is of safety type, i.e., all rejecting
states in the specification automaton have an unconstrained self-loop. As the (concrete)
synthesis game is determined, this means that for every unrealizable such specification,
there is some number k such that the environment has already won after k steps, and
there is only a finite set of positions that might be visited before that. If we add enough
patterns to distinguish all of these positions from all respective other positions, then
after analyzing the abstract game, we can see that all positions visited before losing
the game (i.e., before entering some rejecting state) only characterize one concrete po-
sition each. From this fact we can infer that the specification under concern is in fact
unrealizable. Thus, by adding a post-solution abstract game analysis step to check if all
abstract positions only represent one concrete position each, the algorithm can always
detect unrealizable safety specifications.

5 Experimental Results

We implemented our synthesis approach, without the extensions of Sect. 4.5, in a pro-
totype implementation written in Python, using the SAT solver PICOSAT V.957 [3] and
the ALLQBF solver GHOSTQ 0.85 [9] as solving engines. As there is no other syn-
thesis tool for infinite-state systems to compare against, in our evaluation, we focus on
showing the applicability of our techniques on an example of practical relevance.

Case study: We synthesize a controller to let a robot automatically deliver menu items
in a restaurant to guests who ordered them. We partition the floor of the restaurant into a
set of regions Z and define the neighborhood relation of regions in the restaurant by an
adjacency relation R ⊆ Z × Z. The robot can move between adjacent regions in every
computation cycle, and pick up or deliver a food item. Food is always picked up from
the same region zpickup (i.e., the kitchen), where we assume a tray with prepared food
that is continuously replenished to be located. The first customer orders specific food
items, while the other one just requests any food item to be delivered. Figure 5 depicts
the setting.

For our reactive system, we have as interface (IB , II ,OB ,OI) with IB = {rorder1,
rorder2}, II = {f}, OB = {mz | z ∈ Z} ∪ {deliver}, and OI = {pickup}. The
specification has the following constraints:

– At every point in time, the robot is only in one regionmz , and if the region changes
from one cycle to the next one, the predecessor and successor regions are connected
by R.

– Whenever food item i is ordered by customer 1 (i.e., we have f = i and rorder1
= true), then eventually, the robot picks up food item i from zpickup and does not
deliver it until it is in region 4 (i.e.,m4 = true) at which point it should deliver it.

Synthesis with Identifiers 17

Table

Kitchen
zpickup = z6

z0

z1

z2

z3

z4

z5

Fig. 5. A restaurant scenario with seven zones and two clients. The robot starts in zone z0.

– The robot always picks up a food item of kind pickup when entering the kitchen.
– The robot must deliver a food item before entering the kitchen again. Deliveries

may only take place in regions with customers.
– Whenever customer 2 orders food, then a food item is eventually brought to region

2.
– The robot does not deliver a food item to customer 1 that has not been ordered.
– New orders by a customer are ignored if there are orders by the same customer

that have not yet been fulfilled.

We consider one variant of the scenario with the second customer being present, and
one variant without that customer. In both cases, around 70 transitions are needed to
model the respective scenario.

In addition to the robot scenario, we also considered the mutex protocol from Figure
1 and the example specification from Figure 3.

Results: Table 1 shows the experimental results for building the abstract games. The
computation times were obtained on an Intel i5-3230M 2.60GHz computer running an
x64-version of Linux. The actual game solving process of the abstract games always
took less than 0.1 seconds.

As pattern sets, we always start with all patterns of size at most 1. For the robot
waiter scenario, we find the resulting abstract games to be losing for the system player.
An analysis of the scenario reveals that the reason is that we have a state q1c that disal-
lows the robot to deliver a menu item to customer 1 that is different to the one previously
stored. This state has the task to check that only ordered menu items are delivered. It is
entered whenever a menu item is ordered while no request is yet unfulfilled. When en-
tering the state, the menu item requested is stored into the (single) variable in its scope.
If we are in this state with two different run points, then there is no menu item that
the robot can deliver. However, this is a situation that cannot occur during a play in the
concrete synthesis game. By adding the pattern {(q1c , α0), (q

1
c , α1)}, this is taken into

account in the abstract game and the setting becomes realizable. This modified pattern
set is denoted as “1+” in Table 1.

For the mutex protocol, taking all patterns of size at most 1 suffices. On the other
hand, the example specification from Figure 3 is not found to be realizable with the

18 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

Table 1. Result table for the prototype implementation of our synthesis approach.

Benchmark: 1-client 2-client Mutex Example from
robot waiter robot waiter Figure 3

States: 17 19 4 3
Transitions: 68 72 7 6
Max. pattern

1 1+ 1 1+ 1 1 2 3size considered:
Time to build 19m 25m 19m 28m 1.08s 0.6s 1.3s 4.5s

abstract game: 10.2s 35.5s 11.5s 50.0s
Number of positions

174 216 209 255 10 6 4 4in abstract game:
Number of edges

658 792 966 1152 14 7 4 4in abstract game:
Realizable: 7 3 7 3 3 7 3 3

patterns of size at most one. Thus, we also considered all patterns of size up to 2 (and
additionally 3), where we removed patterns that are equivalent to other patterns in the set
(such as, e.g., {(q1, α1), (q2, α2)} when {(q1, α2), (q2, α1)} is also present). Starting
with a maximum pattern size of 2, the specification is found to be realizable.

It can be seen that the robot waiter scenario can be tackled by our approach, despite
the large number of transitions in its specification automaton. While at first, this may
seem surprising (after all, the number of different moves for the environment player
in the abstract game is exponential in the number of automaton transitions), this suc-
cess can be attributed to the idea to only enumerate the Pareto-optimal moves and use
SAT and ALLQBF solvers as efficient reasoning engines, which reduces the size of the
abstract game and the computation times.

6 Conclusion & Outlook

In this paper, we presented the first synthesis approach for specifications with identifier
variables that is capable of deriving infinite-state implementations for cases in which
these are actually needed. For showing the practical feasibility of our approach, we
applied it to a robot waiter scenario. Our work can be seen as one of the first steps
towards solving the problem of reactive synthesis with data constraints. We focused on
identifiers as data type here, as these are relatively simple to handle, and thus suitable for
one of the first examinations of the reactive synthesis problem with data. We conjecture
that our modeling framework, i.e., universal semi-one-weak automata, remains useful
when extending the data domain, as the model is both simple and powerful.

Our prototype implementation uses off-the-shelf SAT and (ALL)QBF solvers and
employs a simple equivalence-matrix-based approach to deal with the identifiers in
this context. We conjecture that there is still a lot of room for improvement, e.g., by
optimizing the QBF encoding and using a special (ALL)QBF solver that is tuned
towards finding only the Pareto-optimal variable valuations. Also, a counter-example
guided abstraction refinement approach to pattern selection might be suitable.

Synthesis with Identifiers 19

This work was driven by investigating the class of specifications that can be sup-
ported in a practical synthesis algorithm working over an infinite data domain. Thus,
the specification class and the solution algorithm are carefully aligned. It would be in-
teresting to examine how the specification class can be further extended (such as by
loosening the semi-one-weakness requirement). Additionally, it would be useful to de-
velop a suitable specification logic from which the universal automata can be efficiently
generated.

References

1. Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems with many similar processes.
ACM Trans. Program. Lang. Syst. 20(1) (1998) 51–115

2. Becker, B., Ehlers, R., Lewis, M.D.T., Marin, P.: ALLQBF solving by computational learn-
ing. In Chakraborty, S., Mukund, M., eds.: ATVA. LNCS, Springer (2012) 370–384

3. Biere, A.: Picosat essentials. JSAT 4(2-4) (2008) 75–97
4. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In Seidl, H., ed.:

FoSSaCS. Volume 4423 of LNCS., Springer (2007) 153–167
5. Cheng, C.H., Lee, E.A.: Numerical LTL synthesis for cyber-physical systems. CoRR

abs/1307.3722 (2013)
6. Dimitrova, R., Finkbeiner, B.: Abstraction refinement for games with incomplete informa-

tion. In: FSTTCS. (2008) 175–186
7. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-guided control. In Baeten,

J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J., eds.: ICALP. Volume 2719 of LNCS.,
Springer (2003) 886–902

8. Jacobs, S., Bloem, R.: Parameterized synthesis. In Flanagan, C., König, B., eds.: TACAS.
Volume 7214 of LNCS., Springer (2012) 362–376

9. Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.M.: Solving QBF with free variables.
In Schulte, C., ed.: CP. Volume 8124 of LNCS., Springer (2013) 415–431

10. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In Ball, T.,
Jones, R.B., eds.: CAV. Volume 4144 of LNCS., Springer (2006) 31–44

11. Martin, D.A.: A purely inductive proof of Borel determinacy. In: Recursion theory, Sympo-
sium on Pure Mathematics. (1982) 303–308

12. Schewe, S., Finkbeiner, B.: Bounded synthesis. In Namjoshi, K.S., Yoneda, T., Higashino,
T., Okamura, Y., eds.: ATVA. Volume 4762 of LNCS., Springer (2007) 474–488

13. Tabuada, P.: Verification and Control of Hybrid Systems. Springer (2009)
14. Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Comput. 164(2)

(2001) 234–263
15. Wolper, P.: Expressing interesting properties of programs in propositional temporal logic.

In: POPL, ACM Press (1986) 184–193

20 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

Appendix

Using First-order Logic as Alternative Specification Formalism

We chose to use universal semi-one-weak automata as specification formalism in this
paper, as it has the properties needed in order to decide the realizability of a specification
in many practically relevant cases, but at the same time is concise enough to allow an
engineer to write down specifications for systems in a simple manner.

Readers with a background in logic may however wonder if a restricted version of
first-order logic would not be more appropriate. There exist many cases in which the
satisfiability of a sentence in a first-order logic fragment is decidable and it may be
possible to choose such a case and extend it from satisfiability to synthesis in order to
obtain a decidable logic for reactive synthesis that allows to reason over identifiers.

The problem with this approach, which is the main reason why we refrained from
pursuing it, is that even for very simple specifications of reactive systems, the first-
order formulas for the specifications fall out of the decidable cases for satisfiability, not
even mentioning the problem of generalizing the idea to realizability. Intuitively, the
reason is that we have “two sources of unbounded values” in our setting, namely time
and identifiers. There is no bound on the number of different identifier values that we
can observe along the run of a system, and there is no time bound of the length of the
system’s run (in fact, we assume that it is infinite). Furthermore, we have to connect
identifier values with time instants, which requires us to use binary predicates in first-
order logic in addition to needing a binary predicate to represent the order of time. All
of these facts require us to use a lot of features of first-order logic to specify them such
that we easily leave the decidable fragments of first-order logic.

As an example, consider a simplified version of our mutex described in Figure 1,
where the requirement that no two grants are given in successive computation cycles is
omitted. We need three binary relations to describe it in first-order logic:

– ri(x, y) describes that a request with id y is given at time x,
– gi(x, y) describes that a grant with id y is given at time x, and
– ≤(x, y) describes that time step x is earlier (or at the same time) than time step y.

We also have the following unary predicates:

– rf (x) describes that a request is given at time x, and
– gf (x) describes that a grant is given at time x.

The specification for our setting can now be given as ψ = ψ≤ ∧ ψg with:

ψ≤ = ∀x, y : ≤(x, y)↔ (¬≤(y, x) ∨ (x = y))

ψg = ∀x, y∃z : (ri(x, y) ∧ rf (x))→ (gf (z) ∧ ≤(x, z) ∧ gi(z, y))

Note that we used the equality operator here. A requirement that for every time instant
there can only be a request (grant) for one id, respectively, can be added as well, but
is not needed for the following line of reasoning. By reusing the quantifiers, we can
rewrite ψ to a first-order formula of the form ψ = ∀x, y∃z : ψ′, where ψ′ has two
binary predicates, two unary predicates, and uses equality.

Synthesis with Identifiers 21

It has been shown by Warren D. Goldfarb4 that the satisfiability of first-order sen-
tences with this quantifier structure, equality, one binary predicate, and arbitrarily many
unary predicates, is undecidable. As the unary predicates refer to boolean input/output
in our setting, having many unary predicates is natural. Thus even with such a very
simple specification, we naturally miss a decidable sub-class of first-order logic.

The conclusion that can be drawn from this example is that it is hard to avoid unde-
cidability for reactive synthesis with identifiers. However, one should resist the urge to
saturate the specification formalism with expressivity as a consequence, as this prevents
the application of algorithms for performing synthesis in practically relevant cases any-
way. The specification formalism used in the paper is thus chosen carefully to bridge
sufficient expressivity for many practical cases and the possibility to apply a synthesis
algorithm that works for such cases.

The Complete Specification for the Robot Waiter

Figure 6 shows the automaton that models our specification for the case of having only
one customer. The automaton is automatically drawn and the transitions are labeled by
the constraints and assignments. If there is no label, this means that we have neither, and
thus the transition is taken unconditionally, which we marked in the rest of the paper by
adding a true label.

For the two-customer case, the specification is extended by adding the following
two states:

qcust2i qcust2ocoming from q0

true ¬deliver ∨ ¬m2

rorder2

Note that the number of transitions in this figure is five as the self-loop on state
cust2o represents two transitions. We also remove the transition from qcheck to qfail
that forbids the robot to deliver food to zone 2. Formally, this is the transition
(qcheck , {deliver ,m2}, ∅, qfail).

An Unrealizable Variant of the Robot Waiter Specification

The example specifications considered in the main part of this paper are all realizable,
but we also have an unrealizable variant of the robot waiter scenario, where we did not
remove the transition mentioned in the previous paragraph. The resulting abstract game
is then found to be lost for the system player (computation time for solving the abstract
game: < 0.1s), as expected, and we obtain the following benchmarking results:

4 See his 1984 paper “The Unsolvability of the Godel Class with Identity”, The Journal of Sym-
bolic Logic, Vol. 49, 1984, for details or “Decidable Fragments of First-Order and Fixed-
Point Logic - From prefix vocabulary classes to guarded logics” by Erich Grädel, 2003, for an
overview on decidable and undecidable sub-classes of first-order logic.

22 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

Benchmark: 2-client robot waiter,
unrealizable variant

States: 19
Transitions: 73

max. Pattern size considered: 1 1+

computation time needed: 17m39.6s 26m7.4s
number of positions in abs. game: 177 219

Number of edges in abs. game: 686 820
Realizable: 7 7

An Abstract Game Example

For the robot waiter scenarios, the computed abstract games are far too large to include
them here. However, for the example specification from Figure 1, this is not the case.
Figure 7 shows the (automatically drawn) abstract game.

The figure has positions of player 0 (the environment player), which are marked by
boxes, and positions of player 1 (the system player), which are the little circles.

Positions of player 0 are labeled by the set of patterns that cannot be instantiated
in the concrete game positions that the abstract game position represents. Edges in the
game are given as arrows, and are labeled by the corresponding action. For player 0, the
action is the list of enabled transitions, whereas for player 1, we only list the progress
information, as the declared pattern set, which is the other element of which an action
of player 1 consists, can be seen already from the position moved to. Progress is given
for all states in the specification automaton, not just for the non-accepting states.5 For
accepting states, however, we always have progress. The initial position is the one at
the top.

All labels are just lists of boolean values. The following table describes how to
interpret these lists:

Label type: Positions in V0 Edges in E0 Edges in E1

Symbol for a true value: # 1 +
Symbol for a false value: . 0 -
Meaning of element 1 {(q0)} (q0, ∅, ∅, q0) q0

no. 2 {(q2)} (q0, {rf = true}, q1
(ri, a), q1)}

3 {(q3)} (q1, {gf = false}, ∅, q1) q2
4 ∅ (q1, {gi 6=}, ∅, q1) q3
5 {(q1, {a 7→ α0})} (q0, {gf = true}, ∅, q2)
6 (q2, {gf = true}, ∅, q3)
7 (q3, ∅, ∅, q3)

5 This is actually just an implementation detail. We found it important, however, that the figures
in the appendix are actually computed by our prototype implementation. This is also the reason
for the odd order of patterns in the table at the bottom of this page.

Synthesis with Identifiers 23

q
0

q
ch

ec
k

qf
ai

l

!m
0

q
cu

st
1

i

q
g

o
0

q
ro

b
o

te
m

p
ty

!m
0

,!
m

1
,!

m
2

,!
m

3
,!

m
4

,!
m

5
,!

m
6

m
0

q
g

o
1

m
1

q
g

o
2

m
2

q
g

o
3

m
3

q
g

o
4

m
4

q
g

o
5

m
5

q
g

o
6

m
6

q
fa

il
2!r

O
rd

er
1

q
c

u
st

1
o

rO
rd

er
1

q
cu

st
1

c

m
6

 /
 a

:=
f

q
c

u
st

1
w

rO
rd

er
1

 /
 a

:=
f

d
el

iv
er

,m
4

!d
el

iv
er

!m
4

d
el

iv
er

,m
4!d

el
iv

er

m
6

,p
ic

k
u

p
!=

a

!d
el

iv
er

!m
4

!m
0

,!
m

1
,!

m
6

!m
0

,!
m

1
,!

m
2

,!
m

4
,!

m
5

,!
m

6
!m

1
,!

m
2

,!
m

3
!m

2
,!

m
3

,!
m

4
,!

m
5

!m
1

,!
m

3
,!

m
4

,!
m

5
!m

1
,!

m
3

,!
m

4
,!

m
5

,!
m

6
!m

0
,!

m
1

,!
m

5

d
el

iv
er

!m
6

q
ro

b
o

tf
u

ll

m
6

m
6

d
el

iv
er

!d
el

iv
er

Fi
g.

6.
Sp

ec
ifi

ca
tio

n
fo

r
th

e
ro

bo
t

w
ai

te
r

(1
-c

us
to

m
er

va
ri

an
t)

,
dr

aw
n

us
in

g
g
r
a
p
h
v
i
z

.
Fo

r
si

m
pl

ic
ity

,
th

e
sp

ec
ifi

ca
tio

n
ch

ec
ks

th
e

pr
op

er
tie

s
on

ly
fr

om
th

e
se

co
nd

co
m

pu
ta

tio
n

cy
cl

e
on

w
ar

ds
.W

e
re

m
ov

ed
so

m
e

tr
an

si
tio

ns
to

ke
ep

th
e

fig
ur

e
re

ad
ab

le
.I

n
ad

di
tio

n
to

th
e

on
es

in
th

e
fig

ur
e,

w
e

ha
ve

21
ad

di
tio

na
l

tr
an

si
tio

ns
of

th
e

fo
rm

{(
q c

h
ec

k
,{
m

i
,m

j
},
∅,
q f

a
il
)

|
i,
j

∈
{0

,.
..
,6
},
i
<

j}
,

an
d

w
e

ha
ve

6
ad

di
tio

na
l

tr
an

si
tio

ns
of

th
e

fo
rm

{(
q c

h
ec

k
,{
d
el
iv
er

,m
i
},
∅,
q f

a
il
)
|
i
∈

{0
,1
,2
,3
,5
,6
}}

.T
he

se
te

st
th

at
th

e
ro

bo
t

al
w

ay
s

de
cl

ar
es

to
be

in
on

ly
on

e
zo

ne
at

a
tim

e
an

d
th

at
fo

od
is

ne
ve

rd
el

iv
er

ed
to

a
zo

ne
in

w
hi

ch
th

er
e

is
no

cu
st

om
er

.
T

he
in

iti
al

st
at

e
is
q 0

.F
ro

m
it,

th
er

e
is

on
e

tr
an

si
tio

n
fo

r
ch

ec
ki

ng
if

th
e

ro
bo

t
st

ar
ts

in
zo

ne
z 0

.F
or

te
st

in
g

if
th

e
ro

bo
t

on
ly

m
ov

es
ac

co
rd

in
g

to
th

e
la

yo
ut

of
th

e
re

st
au

ra
nt

an
d

th
us

ca
nn

ot
sk

ip
zo

ne
s,

w
e

ha
ve

th
e

st
at

es
q g

o
0

to
q g

o
6

,f
ro

m
w

hi
ch

th
er

e
ar

e
tr

an
si

tio
ns

to
q f

a
il

th
at

ar
e

ta
ke

n
w

he
ne

ve
r

th
e

su
cc

es
so

rz
on

e
is

no
ti

n
th

e
lis

to
fa

dj
ac

en
to

ne
s.

E
nt

er
in

g
st

at
e
q f

a
il

m
ak

es
a

ru
n

of
th

e
au

to
m

at
on

no
n-

ac
ce

pt
in

g,
as

it
is

no
ta

n
ac

ce
pt

in
g

st
at

e
an

d
it

ha
s

an
un

co
nd

iti
on

al
se

lf
-l

oo
p.

A
n

ed
ge

fr
om

q c
h
ec

k
to

q f
a
il

ch
ec

ks
th

at
th

e
ro

bo
ti

s
al

w
ay

s
in

so
m

e
zo

ne
at

ev
er

y
po

in
ti

n
tim

e.
To

ge
th

er
w

ith
th

e
ed

ge
s

no
t

sh
ow

n
in

th
e

fig
ur

e,
bu

tm
en

tio
ne

d
ab

ov
e,

th
is

en
su

re
s

th
at

th
e

ro
bo

ti
s

al
w

ay
s

in
ex

ac
tly

on
e

zo
ne

at
a

tim
e

(f
ro

m
th

e
se

co
nd

co
m

pu
ta

tio
n

cy
cl

e
on

w
ar

ds
).

T
he

st
at

es
q r

o
bo

te
m
p
ty

an
d
q r

o
bo

tf
u
ll

m
on

ito
rt

ha
tp

ic
ki

ng
up

fo
od

an
d

de
liv

er
in

g
fo

od
st

ri
ct

ly
al

te
rn

at
es

,s
ta

rt
in

g
w

ith
pi

ck
in

g
up

fo
od

.
T

he
fiv

e
st

at
es

on
th

e
ri

gh
t-

ha
nd

si
de

of
th

e
fig

ur
e

ha
nd

le
th

e
re

qu
ir

em
en

tt
ha

to
rd

er
ed

fo
od

,a
nd

on
ly

or
de

re
d

fo
od

,i
s

to
be

br
ou

gh
tt

o
th

e
cu

st
om

er
.

T
he

st
at

e
q c

u
st
1
i

re
pr

es
en

ts
id

lin
g

fo
r

cu
st

om
er

1,
w

hi
le

q c
u
st
1
o

re
pr

es
en

ts
th

at
so

m
et

hi
ng

ha
s

be
en

or
de

re
d,

bu
tn

ot
ye

td
el

iv
er

ed
.B

ei
ng

in
st

at
e
q c

u
st
1
c

re
pr

es
en

ts
th

at
th

e
ro

bo
tfi

rs
th

as
to

pi
ck

up
th

e
ri

gh
tf

oo
d

ite
m

be
fo

re
it

m
ay

de
liv

er
to

cu
st

om
er

1.
W

he
n

th
er

e
is

no
ou

ts
ta

nd
in

g
or

de
r,

th
e

st
at

e
is

al
w

ay
s

en
te

re
d

up
on

pi
ck

up
to

pr
ev

en
td

el
iv

er
ie

s.
W

e
m

ay
st

ill
be

in
th

at
st

at
e

af
te

ro
rd

er
in

g,
w

hi
ch

is
m

ot
iv

at
ed

by
th

e
fa

ct
th

at
th

e
cu

st
om

er
m

os
tl

ik
el

y
w

an
ts

fr
es

hl
y

m
ad

e
fo

od
,w

hi
ch

th
e

ro
bo

tc
an

on
ly

pi
ck

up
af

te
r

or
de

ri
ng

.S
ta

te
q c

u
st
1
w

ch
ec

ks
th

at
fo

od
is

ev
en

tu
al

ly
de

liv
er

ed
to

th
e

cu
st

om
er

an
d

br
an

ch
es

to
st

at
e
q c

u
st
1
c

w
he

ne
ve

rt
he

ro
bo

tp
ic

ks
up

th
e

w
ro

ng
fo

od
ite

m
.T

hu
s,

ch
ec

ki
ng

th
e

co
rr

ec
td

el
iv

er
y

of
or

de
rs

is
do

ne
by

th
e

st
at

es
q c

u
st
1
w

an
d
q c

u
st
1
c

in
co

m
bi

na
tio

n.

24 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

. # # . #

1 1 0 0 1 0 0

. # # . .

+ + + +

1 1 1 1 1 0 0 + - + +

. . # . .

+ + + +

1 1 1 1 1 1 0

+ - + +

.... .

+ + + +

1 1 1 1 1 1 1 + + + -

. # . . .

+ - + -

1 1 1 1 1 0 1

+ + + -

+ - + -

Fig. 7. An example abstract game, built from the specification in Figure 1

Synthesis with Identifiers 25

Element numbers in the lists always go from left to right. It can be seen from the game
that once we have reached one of the bottom-most two positions of player 0, player 1
(the system player) cannot win the generalized Büchi game any more as there is no way
to make progress on leaving state q3 any more. From the position labels, we can see that
these are precisely the positions in which the pattern {(q3, ∅)} does not hold (i.e., there
can exist run points for q3 in the concrete game positions that the abstract game position
represents). The only way to get to one of these positions is however to make progress
with respect to leaving state q1 (i.e., having the system player choose gf 6= false)
while the pattern {(q2, ∅)} does not hold. As we are in position q2 along a branch of the
automaton if and only if we have just seen gf = true, this corresponds to the case that
two grants have been given successively, which the specification automaton forbids.

Note that we only have so few positions in our game due to the fact that our imple-
mentation leaves out moves by the two players that are strictly worse than other possible
moves. For example, the system player can always choose to make less progress. Thus,
for example, an edge in the game that is labeled by +−++ would have another seven
sibling edges with weaker progress guarantees. Furthermore, whenever we have an edge
to a position such as “.##..”, we would have another similarly labeled edge to the state
“.#...” as well, as that pattern set is strictly weaker, and our abstract game formulation
allows the system player to declare such a weaker pattern set if it desires.

A Formal Proof of Undecidability for Synthesis from Universal One-weak
Automata with Identifiers (Theorem 1)

Theorem 1. Realizability checking for specifications that are written as semi-one-weak
universal automata with identifiers is undecidable.

Proof. We prove the claim by reducing the problem whether a deterministic Turing
machine accepts the empty word to the unrealizability of a specification given as a
semi-one-weak universal automaton with identifiers.

Assume that we are given a deterministic Turing machine T = (Q,Γ, δ, q0, F)
with the set of states Q, the tape alphabet Γ , the transition function δ : Q × Γ →
Q × Γ × {L, 0, R}, the initial state q0, and the set of accepting states F . The tape
alphabet contains some element , which represents the empty tape cell content.

The system whose realizability we check has the interface (IB , II ,OB ,OI) with
IB = {done phase1}, II = {in id},OB = {tape end} ∪ {t0, . . . , tz}, where z is
large enough to allow encoding all elements in (Q ∪ {⊥}) × Θ into valuations of the
variables t0, . . . , tz , and OI = {out id}.

The idea of our reduction is the following: we write a specification that allows the
environment to provide a sequence of identifier values to the system and once the en-
vironment sets done phase1 , the system is forced to output the Turing tape configura-
tions of a run of the Turing machine, where the identifiers provided are used as addresses
of the Turing tape cells. The tape is thus of bounded length, and the system must never
output a configuration with an accepting state. However, the Turing machine is allowed
to leave the tape with the tape head, at which point the Turing machine computation
basically stops by not changing the tape content anymore.

26 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

As it is in the interest of the environment that supplies the input to make the system
violate the specification, it is in its interest to supply a set of identifiers that is large
enough to never let the tape head get out-of-bounds for the accepting run of the Turing
machine (if it exists). If the Turing machine accepts, the environment can then force
the system to violate the specification by providing a tape that is long enough. On the
other hand, if the Turing machine does not accept a word, then the system can simulate
it ad infinitum or until the tape is exceeded, so the length of the tape provided by the
environment does not matter.

We take a specification ψ that consists of multiple parts, which for the time being
we connect via boolean operators. We first describe the individual parts of the specifi-
cation and their encoding as universal semi-one-weak automata with identifiers. How to
connect the specification parts to one big semi-one-weak automaton is dealt with later.

ψ = ψassumptions ∨ (ψinit ∧ ψidsucc ∧ ψtapeinit ∧ ψprogress ∧ ψnonterm)

Let us first informally define what the parts of the specification are supposed to repre-
sent.

– ψassumptions describes that the tape provided by the environment is not at least
3 tape cells long. We use this assumption to simplify the description of the other
automata.

– ψinit describes that at the start of the execution of the system, the environment can
provide a sequence of identifiers, and when done phase1 is then set, the system
is forced to output that sequence of identifiers over and over again (separated by
occurrences of the tape end bit being true). If the environment uses the same iden-
tifier twice in the sequence, then the system is allowed to cut the sequence shorter.

– ψidsucc works together with ψinit to ensure that the tape boundaries are handled
correctly.

Due to the fact that the system is forced to output some sequence of identifiers all the
time, we can use the identifiers as addresses for positions along a Turing tape. So while
the system outputs an address along out id , the bits {t0, . . . , tz} represent the Turing
tape content and the state at that position. If the Turing machine head is elsewhere,
then t0, . . . , tz encode ⊥ as the state component. The correctness of the Turing tape
computation is ensured by the next parts of the specification:

– ψtapeinit describes that along the output bits that represent the tape content, the
system outputs the empty tape (plus q0 at the tape start) initially.

– ψprogress describes that the tape contents evolve according to the specification of
the machine, and that when the head moves out of tape boundaries, the tape head
may disappear.

– ψnonterm describes that the Turing machine never reaches a state in F

All of these specification parts can be represented as safety automata, i.e., as semi-
one-weak universal automata in which the only non-accepting states are ones with self-
loops for every element in IS × OS .

Let us start by giving ψinit .

Synthesis with Identifiers 27

q0

q1

q2q3

q4

q5

done phase1

done phase1/a := in id

done phase1 ∧ a 6= in id/b := in id

a 6= in id ∧ done phase1
done phase1 ∧ a 6= in id

done phase1 ∧ a 6= in id

true

tape end

out id = a

out id 6= a

out id 6= b

For simplicity, in this automaton and the ones to follow, we abbreviated the error state(s)
by . An error state is a rejecting state that has self-loops for all elements in IS ×OS .
The automaton effectively loops in q0 until the environment declares that the phase in
which the identifiers that are to be used as addresses for positions on the Turing tape are
declared is over. Along the way, the automaton branches to q1 and stores two successive
identifiers from in id into the variables a and b. On these runs, we are then in state q2
that we leave when done phase1 is given. From that point onwards, we move to state
q4 whenever the next tape content is to be given by the system, where we wait until we
see identifier a on out id . Whenever that happens, then b should be given next. State q3
ensures that this shall happen every time a new tape content is printed out. Note that if
the identifier a is repeated before reaching states q3 and q4, then a run of the automaton
simply ends.

Now ψinit works together with ψidsucc to ensure that the tape boundaries are dealt
with correctly, as described in the following automaton:

q0

q1q2

q3

q4

/a := in id

done phase1/b := in id

done phase1
done phase1/b := in id

tape end

a = out id

true

tape end
tape end 6= (out id = b︸ ︷︷ ︸

this is boolean

)

a 6= out id

28 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

This automaton checks that the first and the last identifiers that are given by the envi-
ronment during the first phase of the system’s execution (i.e., until done phase1 is set)
are repeated correctly by the system (all the time).

We continue with the description of ψtapeinit . For some (q, x) ∈ (Q∪{⊥})×Γ , let
bq,x be a boolean formula over the variables {t0, . . . , tz} that describes that t0, . . . , tz
represents (q, x). The automaton for ψtapeinit now looks as follows:

q0

q1

 q2

done phase1

done phase1

tape end ∧ bq0,

tape end ∨ ¬bq0,

tape end
¬b⊥,

The correct evolution of the tape content is checked by ψprogress , which consists
of (1) one conjunct for every (q, x) ∈ Q × Γ that checks the transitions of the Turing
machine, (2) one conjunct for every x ∈ Γ that checks that Turing tape cells whose
content is x are never altered if the tape head is not at the respective position, and (3)
one automaton that tests that the head is always only at at most one position.

We start with the first group of conjuncts. Let δ(q, x) = (q′, x′, d) for some q′ ∈ Q,
x ∈ Γ , and d ∈ {L, 0, R}. If d = 0, then the automaton for (q, x) looks as follows:

q0

q1

q2

q3

q4

done phase1

done phase1
done phase1

tape done

true

tape done

tape done ∧ bq,x/a := out id

tape done ∧ bq,x/a := out id

tape done

tape done

tape done

a = out id ∧ ¬bq′,x′

Synthesis with Identifiers 29

For the case that we have d = R, the automaton looks like this:

q0

q1

q2

q3

q4

q5

done phase1

done phase1
done phase1

tape done

true

tape done

tape done ∧ bq,x/a := out id

tape done ∧ bq,x/a := out id

tape done

tape done

tape done

a = out id ∧ ¬b ,x′

a = out id ∧ tape end

¬ ∨x′′∈Γ bq′,x′′

For the case that d = L, the automaton looks like this:

q0

q1

q2

q3

q4

q5

done phase1

done phase1
done phase1

tape done

true

tape done

tape done ∧ bq,x/a := out id

tape done ∧ bq,x/a := out id

tape done

tape done

tape done

a = out id ∧ ¬b ,x′

(¬ ∨x′′∈Γ bq′,x′′) ∧ tape end

a = out id

30 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

For the second group of conjuncts in ψprogress , we instantiate one automaton of the
following form for every x ∈ Γ :

q0

q1

q2

q3

q4

done phase1

done phase1
done phase1

tape done

true

tape done

tape done ∧ b⊥,x/a := out id

tape done ∧ bq,x/a := out id

tape done

tape done

tape done

a = out id ∧ ¬ ∨q∈Q∪{⊥} bq,x

Finally, we have one automaton that checks that the tape head is always at most at
one position at a time.

q0

q1

q2

q3

done phase1

done phase1
done phase1

tape done

true

tape done

tape done ∧ ∨q∈Q,x∈Γ bq,x

tape done

∨q∈Q,x∈Γ bq,x

The specification part ψnonterm now states that the Turing machine shall not even-
tually transition to an accepting state.

Synthesis with Identifiers 31

q0

q1

done phase1

done phase1

true

∨q∈F,x∈Γ bq,x

Finally, we apply some assumption over the input. Some of the automata that we
have just seen only work correctly if the tape given by the environment has at least three
tape cells. We use the following assumption automaton that accepts all inputs that do
not satisfy these requirements:

q0

q1

q2

q1ok

q2ok

q3ok

done phase1

done phase1/c := in id

done phase1 ∨ in id = c

done phase1 ∧ in id 6= c/d := in id

in id 6= c ∧ in id 6= d

in id = c ∨ in id = d

true

true

true

All the specification parts in ψinit ∧ψidsucc ∧ψtapeinit ∧ψprogress ∧ψnonterm have
been given as (sets of) universal semi-one-weak automata. Computing an automaton
that represents this conjunction is not difficult: we join the state spaces of the automata,
introduce one additional initial state and copy all outgoing transitions from the states
that are initial states in the sub-automata to the new initial state. We obtain a semi-one-
weak automaton Ag .

Let Aa be the automaton for ψassumptions . We build one automaton for the overall
specification by taking the parallel product of Ag and Aa. The resulting automaton
is one-weak, a safety automaton, and we declare those states to be accepting that are
accepting for either Ag or Aa. Recall that we used to represent states that are non-
accepting and self-looping for all elements in IS ×OS . Thus, only if we enter states
for both of the factor automata along a run, the run is rejecting. All runs of the product
automaton for which this never happens are not rejecting.

As the resulting automaton represents an unrealizable specification if and only if the
Turing machine accepts with some bounded tape, and every accepting run of a Turing
machine only needs a bounded tape, the claim follows.

