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Abstract: We present a formal connection between supervisory control theory in the field of
control engineering and reactive synthesis in the field of formal methods. We focus on the case
of fully-observed discrete-event systems that are controlled by a single controller/supervisor
in order to achieve a safety specification and a non-blocking specification. The connection is
shown by a reduction of the corresponding supervisory control problem to a problem of reactive
synthesis with plants and maximal permissiveness, subject to a CTL temporal logic specification.
In order to establish the desired reduction, we prove two new results regarding (i) a simplified
version of the standard supervisory control problem and (ii) a class of reactive synthesis problems
that admit unique maximally permissive solutions. The reduction complements prior work at
the boundary of supervisory control and reactive synthesis.

1. INTRODUCTION

We present a formal connection between synthesis prob-
lems that have been considered, largely separately, in the
two communities of control science in engineering and for-
mal methods in computer science. By making this connec-
tion mathematically precise, we hope to “bridge the gap”
between two research areas that aim at tackling similar
synthesis problems for discrete event systems, but from
different angles, and by emphasizing different, and often
complementary, aspects. Such a formal bridge should be a
source of inspiration for new lines of investigation that will
leverage the power of the synthesis techniques that have
been developed in these two areas.

Supervisory Control: The control science and engineer-
ing community has been investigating feedback control of
Discrete Event Systems (DES) using models from com-
puter science, such as automata and Petri nets. The body
of control theory developed in DES has been for specifica-
tions that are expressible as regular languages, in the case
of DES modeled by automata, or in terms of constraints
on the state (marking vector), in the case of DES modeled
by Petri nets. Control-theoretic frameworks have been de-
veloped for both of these modeling formalisms; cf. Seatzu
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et al. [2013]. In this paper, we focus on the supervisory
control theory for DES modeled by finite-state automata
and subject to regular language specifications. Both the
“plant” (i.e., uncontrolled system) and the specification
are represented as finite-state automata over a common
event set. The foundations for this framework were devel-
oped in the seminal work of Ramadge and Wonham [1987].
Since then, a whole body of theory has been developed that
covers a wide variety of control architectures and informa-
tion structures, with vertical and horizontal modularity.
The reader is referred to Cassandras and Lafortune [2008]
and Wonham [2013] for textbook expositions of this the-
ory. The focus of this theory is on the synthesis of provably
safe and non-blocking controllers for a given plant, despite
limited actuation and limited sensing capabilities.

Reactive Synthesis: The design of reactive systems, i.e.,
systems that engage in an ongoing interaction with their
environment, is one of the most challenging problems in
computer science. In reactive systems, a correct system
should satisfy the specification with respect to all environ-
ment behaviors. The specification is usually expressed in
a temporal logic. Pnueli and Rosner [1989b], Abadi et al.
[1989], and Dill [1989] argued that the right way to ap-
proach synthesis of reactive systems is to use the model of
a, possibly infinite, game between the environment and the
system. A correct system can be then viewed as a winning
strategy in this game. It turns out that satisfiability of the
specification is not sufficient to guarantee the existence of
such a strategy. Abadi et al. [1989] called specifications
for which a winning strategy exists realizable. Since then,
the subject of reactive synthesis has been an active area
of research, attracting considerable attention; see, e.g.,
Pnueli and Rosner [1989a], Vardi [1995] and Kupferman
and Vardi [2000].



Related Works: This paper is not the first to explore
connections between supervisory control and reactive syn-
thesis. On the supervisory control side, several authors
have considered control of DES subject to temporal logic
specifications; see, e.g., Thistle and Wonham [1986], Lin
[1993], and Jiang and Kumar [2006]. Supervisory control
of DES with infinite behavior has also been considered
by many researchers; see, e.g., Ramadge [1989], Kumar
et al. [1992], Thistle and Wonham [1994a], and Thistle and
Wonham [1994b]. On the other hand, several researchers
in the formal methods community have investigated su-
pervisory control of fully- and partially-observed DES; see,
e.g., Hoffmann and Wong Toi [1992], Asarin et al. [1995],
Madhusudan [2001], Kupferman et al. [2000], Arnold et al.
[2003], and Riedweg and Pinchinat [2003].

Contribution: In the present paper, we restrict attention
to the classical version of centralized supervisory control
for fully-observed systems modeled by languages of finite
strings. Our goal is to establish a precise connection of
supervisory control problems with problems of reactive
synthesis, by showing how specific problem instances re-
duce to each other. To our knowledge, such reductions
have not been published elsewhere. Our results therefore
complement the existing work. We start in Section 2 by
briefly presenting necessary background material from su-
pervisory control and reactive synthesis. The main results
of this paper are contained in Section 3. First, we present in
Section 3.1 a simplification of the basic supervisory control
problem, non-blocking version, to one where the safety
specification has been absorbed into the plant model. We
then show that the resulting Simple Supervisory Control
Problem (SSCP) has a state-based solution. Second, for
bridging reactive synthesis with supervisory control, we
need two technical steps: the first step is to consider
reactive synthesis with plants; the second step is to bring
in the issue of maximal permissiveness into this reactive
synthesis setting. These two steps are covered in Sec-
tion 3.2. We then establish the formal reduction from
SSCP to a reactive synthesis problem with plants and
maximal permissiveness in Section 3.3. A discussion and
some concluding comments follow in Sections 3.4 and 4.

Due to space limitations, we do not review temporal logics
such as LTL, CTL, and CTL?. Moreover, our presentation
excludes proofs and has few examples. Our focus is on
presenting the necessary concepts for our main results,
Theorem 4 and Corollary 2. We refer the reader to Ehlers
et al. [2013] for a detailed treatment of our results.

2. BACKGROUND

Supervisory Control: In supervisory control theory,
plants are typically modeled as deterministic finite-state
automata. A deterministic finite-state automaton (DFA)
is a 5-tuple G = (X,x0, Xm, E, δ) where

• X is a finite set of states, x0 ∈ X is the initial state,
and Xm ⊆ X is the set of marked states;
• E is a finite set of events. E is (implicitly) partitioned

into two disjoint subsets: E = Ec ∪ Euc where Ec

models the set of controllable events and Euc the set
of uncontrollable events.

• δ : X × E → X is the transition function, which in
general will be partial.

The transition function is partial because G models the
physically possible behavior of the uncontrolled plant, as a
generator of events. Selection of the states to “mark,” i.e.,
to be included in Xm, is a modeling consideration to cap-
ture strings that represent that the system has completed
some task. It is customary to extend δ to strings. The
DES G defines the following languages: L(G) = {σ ∈ E∗ |
δ(x0, σ) is defined} and Lm(G) = {σ ∈ E∗ | δ(x0, σ) ∈
Xm}.
A supervisor for G is a function S : E∗ → 2E . To
ensure that S never disables an uncontrollable event, we
require that Euc ⊆ S(σ) for all σ ∈ E∗. Given G =
(X,x0, Xm, E, δ) and S : E∗ → 2E for G, the closed-
loop system S/G is formally defined as follows: S/G =
(X ′, x′0, X

′
m, E, δ

′) where

• X ′ = X × L(G)
• x′0 = (x0, ε)
• X ′m = Xm × L(G)

• δ′
(
(x, σ), e

)
=

{
(δ(x, e), σe) if δ(x, e) is defined

and e ∈ S(σ)
undefined otherwise.

S/G is an automaton, therefore, languages L(S/G) and
Lm(S/G) are well defined. It is easy to verify that
Lm(S/G) = L(S/G) ∩ Lm(G) since a marking in S/G is
completely determined by a marking in G. S is said to
be non-blocking for G iff Lm(S/G) = L(S/G) where the
overline notation denotes prefix-closure.

Consider a plant G and two supervisors S1, S2 for G. We
say that S1 is no more permissive than S2 iff S1(σ) ⊆
S2(σ) for any σ. We say that S2 is strictly more permissive
than S1 iff S1 is no more permissive than S2 and S1 6= S2.

S is needed in order to enforce the safety specification im-
posed on G. In supervisory control, the safety specification
is modeled by a prefix-closed regular language, denoted by
La, over the event set E of G. La is prefix-closed since for
a string to be safe, all of its prefixes should also be safe.
In this paper, we define the admissible marked language
Lam for plant G as Lam := La ∩ Lm(G). S is said to
be safe for G with respect to Lam if L(S/G) ⊆ Lam. A
supervisor S which is non-blocking for G and safe w.r.t.
Lam is said to be maximally-permissive with respect to G
and Lam if there is no supervisor S′ which is non-blocking
for G, safe w.r.t. Lam, and strictly more permissive than S.
The theorem below shows that, for non-blockingness and
safety, a unique maximally-permissive supervisor exists,
provided that a supervisor exists at all. This well-known
result from Ramadge and Wonham [1987] motivates the
definition of BSCP-NB that follows.

Theorem 1. Consider G and Lam as defined above. If
there exists a supervisor which is non-blocking for G and
safe w.r.t. Lam, then there exists a unique maximally-
permissive supervisor Smpnb which is non-blocking for G
and safe w.r.t. Lam.

Definition 1. (BSCP-NB). Given G and Lam as defined
above, find if it exists, or state that there does not exist,
a supervisor for G which is non-blocking for G, safe w.r.t.
Lam, and maximally-permissive.

Reactive Synthesis: In reactive synthesis, we build
correct-by-construction “controllers” (or system imple-



mentations) from declarative specifications. Controllers
are open dynamical systems. A controller is open in the
sense that it has inputs and outputs, and its dynam-
ics depend on the inputs that it receives. These inputs
come from the controller’s environment. A specification is
declarative in the sense that it states how a controller must
behave, but it is not concerned with its internal structure.
Rather, the specification only describes the desired behav-
ior of the controller on the interface level, i.e., using its
sets of inputs and outputs. To perform synthesis from this
specification, we need to formalize it. In reactive synthesis,
this is typically done by describing the specification in a
logic. The logic CTL? [Emerson and Halpern, 1986] is well-
suited for this purpose and extends standard Boolean logic
by temporal operators and path quantifiers that intuitively
allow us to connect the system’s signal valuations in one
step with the actions in other, future time steps. In the
context of logic, we also call the signals atomic proposi-
tions. LTL and CTL are proper subsets of CTL?. In this
paper, we will consider a single specific CTL formula to
capture non-blockingness.

Informally, the basic Reactive Synthesis Problem (or RSP)
is to synthesize a controller that provably satisfies a
given temporal logic specification (in some temporal logic),
for all realizations of the environment variables, which
come as inputs to the controller. (We formally define
Reactive Synthesis Control Problem with plants (RSCP)
in Section 3.2.) To get an overview about the possible
behaviors of a system, for the scope of synthesis, we
typically view a system implementation as a computation
tree denoted by the tuple 〈T, τ〉. Let API be the set of
input signals (events) and APO be the set of output signals
(events). Formally, for some interface (API ,APO) of a
reactive system, a computation tree is a tuple 〈T, τ〉, where
T = (2API )∗ and τ : T → 2API∪APO . The tree describes all
the possible traces by having τ map every input sequence
to an output signal valuation that the controller produces
after having read the input sequence. Without loss of
generality, we assume that every node in the computation
tree is also labeled by the last input.

3. BRIDGING THE GAP

BSCP-NB
(Def. 1)

RSP
(Sec. 2)

RSCPAGEFq
max

(Def. 5)

SSCP
(Def. 2)

RSCP
(Def. 4)

Corollary 1

Corollary 1

Corollary 2 Section 3.4

Automata

Section 3.4Section 3.4

Fig. 1. Relations between different synthesis and supervi-
sory control problems.

Figure 1 describes our process for bridging the gap be-
tween supervisory control theory and reactive synthesis.
We introduce problems that conceptually link BSCP-NB
and RSP. These problems always differ in one aspect from
their neighbors, and we can perform reductions between
them. However, our bridge does not exactly meet in the
middle. The reason is that the aims of supervisory con-
trol and reactive synthesis slightly differ. In supervisory

control, we always want our supervisor to be maximally
permissive, as it should only block unwanted actions. In
reactive synthesis, on the other hand, where maximal
permissiveness in unachievable in general, we want our
controller to actively enforce certain properties, possibly at
the expense of preventing certain overall system behavior
that is unproblematic. This mismatch, and the lack of
study of the general reactive synthesis problem with maxi-
mal permissiveness, prevent us from performing a sequence
of reductions that map the problems completely onto each
other. The problems that are closest to the missing piece of
our bridge can be solved algorithmically using automata;
this is captured conceptually in Figure 1 by the “vehicular”
connection between the two sides of the bridge.

3.1 Simplifying the Supervisory Control Problem

We show that BSCP-NB is equivalent to a simpler super-
visory control problem in which only non-blockingness is
required, called SSCP. We then show that SSCP admits
state-based solutions in terms of the plant model. The
consideration of SSCP will simplify the reduction to the
reactive synthesis setting.

Theorem 2. Consider G and Lam as defined previously.
Let A be a complete DFA such that L(A) = E∗ and
Lm(A) = Lam. Let S be a supervisor for G, and therefore
also for G × A. Then, the following two statements are
equivalent:
(i) S solves BSCP-NB for plant G with respect to Lam.
(ii) S solves BSCP-NB for plant G × A with respect to
Lm(G×A).

Definition 2. (SSCP). Given G, find (if it exists, or state
that none exists) a maximally-permissive non-blocking
supervisor for G.

Corollary 1. BSCP-NB and SSCP are equivalent prob-
lems: each one can be reduced to the other with a
polynomial-time reduction.

Definition 3. S is said to be state-based if
∀σ1, σ2 ∈ E∗ : δ(x0, σ1) = δ(x0, σ2)⇒ S(σ1) = S(σ2).

Theorem 3. The solution to SSCP, if it exists, is a state-
based supervisor.

3.2 Reactive Synthesis With Plants

Most classical reactive synthesis frameworks do not have
a notion of a plant. An exception to the above is the
work by Madhusudan [2001], where the control problem
for non-reactive environments is defined as the problem
of synthesizing a controller for a given plant modeled as
a finite-state Kripke structure, so that the closed-loop
system satisfies a specification in CTL or CTL?. As done
by Madhusudan [2001], a plant can be captured as a
transition system, specifically a form of Kripke structure:
P = (W,w0, R,AP,L) where

• AP is a set of atomic propositions.
• W is a set of states with w0 the initial state. W

is (implicitly) partitioned into two disjoint subsets
W = Ws ∪We: Ws models the system states (where
the system must choose a move) and We models
the environment states (where the environment must
choose a move).
• R ⊆W ×W is the transition relation.



• L : W → 2AP is a total labeling function mapping
every state w to a set of propositions true in this
state.

We assume that R is total. We define succP (w) = {w′ |
(w,w′) ∈ R}. A Kripke structure plant is called finite when
its set of states is finite.

The logic CTL? mentioned earlier is useful for specifying
control objectives in plants. In this context, we evaluate
the CTL? formula on the tree that is induced by the Kripke
structure P . We say that P induces a computation tree
〈T, τ〉 if the following conditions hold:

• T ⊆W ∗, ε ∈ T
• {t ∈ T : |t| = 1} = {w ∈W : (w0, w) ∈ R}
• τ(ε) = L(w0)
• For all t = t0t1 . . . tn ∈ T , the set of t′s children is

precisely {t0t1 . . . tntn+1 | tn+1 ∈W, (tn, tn+1) ∈ R}
• For all t = t0t1 . . . tn ∈ T , we have τ(t) = L(tn).

In a nutshell, the computation tree that is induced by
a Kripke structure represents all possible paths in the
Kripke structure at the same time. A path of P is an
infinite sequence π = w0w1 · · · , such that wi ∈ W and
(wi, wi+1) ∈ R, for all i ≥ 0. Given some CTL? state
formula φ, we say that some state w ∈ W satisfies φ
if the computation tree for the Kripke structure Pw =
(W,w,R,AP,L) that only differs from P by its initial
state, satisfies φ. We say that a plant satisfies a CTL?

state formula φ, written formally as P |= φ, if the tree
induced by P satisfies φ.

A plant P may not generally satisfy a CTL? specification
φ. A strategy aims to restrict P so that it satisfies φ.
Formally, a strategy for P is a (total) function f : W ∗ ×
Ws → 2W such that for all u ∈ W ∗, w ∈ Ws, f(u,w)
is a non-empty subset of succ(w). The intuition is that
f observes the history of all states visited previously,
u ∈ W ∗, as well as the current system state w ∈ Ws,
and chooses to allow moves to only a subset (but a non-
empty subset) of the successors of w. A strategy f is state-
based if for all u1, u2 ∈ W ∗, and for all w ∈ Ws, we have
f(u1, w) = f(u2, w). This means that f only depends on
the current state w and not on the previous history u.

A strategy f defines a new (infinite-state) Kripke structure

P f : P f = (W f , wf
0 , R

f , AP, Lf ) where

• W f = W ∗ ×W
• wf

0 = (ε, w0)
• Rf = {

(
(u,w), (u ·w,w′)

)
|
(
w ∈We ∧ (w,w′) ∈ R

)
∨(

w ∈Ws ∧ w′ ∈ f(u,w)
)
}

• Lf (u,w) = L(w) for all u ∈W ∗, w ∈W .

Note that Rf is guaranteed to be total. This is because R
is assumed to be total, and f is required to be such that
f(u,w) 6= ∅.
Given Kripke structure plant P and CTL? formula φ, we
say that a strategy f enforces φ on P if it is the case that
P f |= φ. The Reactive Synthesis Control Problem with
plants (RSCP) is the following:

Definition 4. (RSCP). Given finite Kripke structure plant
P and CTL? formula φ, find (if it exists, or state that there
does not exist) a strategy that enforces φ on P .

RSCP-CTL denotes RSCP where φ is required to be a
CTL formula. (And similarly for other temporal logics.)

The definition of RSCP does not require that the strategy
f be maximally-permissive in any way. The reason is
that unique maximally-permissive strategies do not always
exist. Let f1, f2 be two strategies for P . f1 is said to be
no more permissive than f2 iff for all u ∈ W ∗, w ∈ Ws

such that uw is a sequence of states that can be a prefix
of a run in P f2 , f1(u,w) ⊆ f2(u,w). f2 is said to be
strictly more permissive than f1 if f1 is no more permissive
than f2 and f1(u,w) 6= f2(u,w) for some u ∈ W ∗,
w ∈ Ws such that uw is a sequence of states that can
be a prefix of a run in P f2 . f1 is said to be maximally
permissive with respect to specification φ if f1 enforces φ
and there is no strategy f2 which enforces φ and is strictly
more permissive than f1. The next result characterizes
one class of specifications that admit unique maximally-
permissive strategies, provided one strategy exists. To the
best of our knowledge, no such characterizations have been
established before in the reactive synthesis literature.

Proposition 1. Let P be a Kripke structure and q be a
CTL state formula without temporal operators. If there
exists a strategy enforcing AGEFq on P , then there ex-
ists a unique, maximally-permissive, state-based strategy
enforcing AGEFq on P .

Exploiting Proposition 1, we define the new problem
RSCPAGEFq

max , which is a variant of RSCP-CTL. In problem
RSCPAGEFq

max , the specification is a CTL formula of the
form AGEFq where q is a CTL formula without temporal
operators.

Definition 5. (RSCPAGEFq
max ). Given finite Kripke structure

plant P and CTL formula AGEFq where q is a CTL formula
without temporal operators, find (if it exists, or state
that there does not exist) the unique maximally-permissive
state-based strategy that enforces φ on P .

3.3 From Supervisory Control to Reactive Synthesis with
Plants

We are now ready to show how to reduce SSCP to
RSCPAGEFq

max . Given a DES plant G in the form of a DFA, we
first construct a plant PG in the form of a Kripke structure.
A system state of PG is a state x of G. An environment
state of PG is either of the form (x, c), where c ∈ Ec,
or (x,⊥). All successors of system states are environment
states, and vice versa. From a system state x, PG has at
most |Ec|+1 possible successors, one successor of the form
(x, c) for each controllable event c which is enabled at state
x in G, plus an extra successor (x,⊥). Intuitively, choosing
a subset of the successors of x amounts to allowing a subset
of the controllable events enabled at x. If only (x,⊥) is
chosen, then all controllable events are disabled and only
uncontrollable events (if any) are allowed to occur at x.

From environment state (x, c), PG has an outgoing transi-
tion to a system state x′ if either G has an uncontrollable
transition from x to x′, or G has a transition labeled c from
x to x′. That is, the only transitions enabled from (x, c)
are uncontrollable transitions or the controllable transition
labeled c (there can only be one such transition since G is
deterministic). If x has no controllable transition labeled
c, then (x, c) is not a successor of x by construction.



Therefore, an outgoing transition is guaranteed to exist
from every reachable environment state of the form (x, c)
with c ∈ Ec. Finally, from environment state (x,⊥), PG

has an outgoing transition to a system state x′ if G has
an uncontrollable transition from x to x′. That is, only
uncontrollable transitions are allowed from (x,⊥). If x has
no outgoing uncontrollable transitions then a transition
back to x is added to (x,⊥). These “back-transitions”
achieve two goals. First, they prevent deadlocks in PG.
Second, we can prove that non-blocking strategies can
always be extended to allow successors of the form (x,⊥);
cf. Lemma 5 in Ehlers et al. [2013].

We also need to define the set of atomic propositions
and the labeling function of PG. PG has a single atomic
proposition, acc. The states of PG labeled with acc are
system states x ∈ Xm in G, and environment states (x, c)
or (x,⊥) where x ∈ Xm in G.

To express the requirements of SSCP as a temporal logic
formula, we use the CTL formula φnb := AGEF acc.
φnb states that it is always possible to reach a marked
state from any reachable state. This formula characterizes
non-blockingness. Note that non-blockingness cannot be
expressed in LTL.

Let G = (X,x0, Xm, E, δ) be a DES plant with E = Ec ∪
Euc. It is convenient to define the functions En : X → 2E

with En(x) = {e | δ(x, e) is defined}, Enc : X → 2Ec

with Enc(x) = En(x) ∩ Ec, and Enu : X → 2Euc with
Enu(x) = En(x)∩Euc, which return, respectively, the set of
all events, controllable events, and uncontrollable events,
enabled at state x.

The Kripke structure plant PG is defined to be PG =
(W,w0, R,AP,L) such that

• W = Ws ∪We, with Ws = X and We = X × (Ec ∪
{⊥}).
• w0 = x0. Therefore, w0 is a system state.
• R = Rs ∪Re, with

Rs = {
(
x, (x, c)

)
| x ∈ X, c ∈ Enc(x)}

∪ {
(
x, (x,⊥)

)
| x ∈ X}

Re = {
(
(x, c), x′

)
| x, x′ ∈ X,∃e ∈ Euc ∪ {c} :

δ(x, e) = x′}
∪ {
(
(x, c), x) | x ∈ X, c ∈ Ec, c /∈ Enc(x)}

∪ {
(
(x,⊥), x′

)
| x, x′ ∈ X,∃u ∈ Euc : δ(x, u) = x′}

∪ {
(
(x,⊥), x

)
| x ∈ X,Enu(x) = ∅}

• AP = {acc}.

• L(s) =

{ {acc} if s = x or s = (x,⊥)
for some x ∈ Xm

{} otherwise.

The following lemma guarantees that PG does not have
deadlocks, therefore, it is a valid Kripke structure plant.

Lemma 1. The above-defined R of PG is total.

As an illustrative example, consider plant G1 of Figure 2,
where Ec = {c1, c2} and Euc = {u}. Its Kripke structure
PG1 is shown in Figure 2. States drawn as circles are
system states; states drawn as rectangles are environment
states. States with double lines are those labeled with acc.

x0

x1

x2

x3

c1

c2

u c1

c2 x0 x0,⊥

x0, c1

x0, c2

x3

x1

x2

x3,⊥

x3, c2

x3, c1

x2,⊥

x1,⊥

Fig. 2. Plant G1 (left) and its Kripke structure PG1

Whenever we are concerned with a state-based strategy f
for some set of states W , we simply write f(w) for some
w ∈ Ws to mean the value of f(w,w) for any w ∈ W ∗.
Since for state-based strategies the value of w does not
make a difference, f(w) is uniquely defined. We can now
state our main reduction results.

Theorem 4. Let G = (X,x0, Xm, E, δ) be a DES plant and
PG = (W,w0, R,AP,L) be a Kripke structure built from
G by the above construction.

(1) Given a non-blocking maximally-permissive state-
based supervisor S forG, we can compute a maximally-
permissive state-based strategy fS enforcing AGEFacc
on PG as follows: For all w ∈Ws,

fS(w) = {(w, c) | c ∈ S(w) ∩ Ec} ∪ {(w,⊥)}.
(2) Given a maximally-permissive state-based strategy f

enforcing AGEFacc on PG, we can compute a non-
blocking state-based maximally-permissive supervi-
sor Sf for G as follows: For all x ∈ X,

Sf (x) = Euc ∪ {e ∈ Ec | (x, e) ∈ f(x)}.
Corollary 2. SSCP can be reduced to RSCPAGEFq

max with a
polynomial-time reduction.

3.4 Discussion

The solution of RSP-LTL has been well studied in the
reactive synthesis literature since the publication of the
seminal paper [Pnueli and Rosner, 1989b]. On the other
hand, techniques for solving RSP-CTL and RSP-CTL?

are provided in a number of works, for instance, Kupfer-
man and Vardi [1999] and Madhusudan [2001]. Madhusu-
dan’s thesis [Madhusudan, 2001] also provides a method
for solving RSCP-CTL? (and thus also RSCP-LTL and
RSCP-CTL as special cases) by reducing it to the module-
checking problem [Kupferman and Vardi, 1996]. In view of
Theorem 4, RSCPAGEFq

max can be solved using the standard
algorithm for supervisory control problem BSCP-NB.

Generally speaking, RSP can be seen as a special case
of RSCP, where the plant offers some possible input at
every step. (However, some technical details would need
to be resolved, as RSP is formulated in terms of inputs
and outputs whereas RSCP is formulated in terms of
system and environment states.) Conversely, RSP may
appear at first sight more restrictive than it really is, as
there is no notion of a plant that encodes the possible
environment behavior. Yet, we can encode the possible
plant behavior into the specification. Starting from a
specification φ, we can modify it to some specification φ′

such that for satisfying φ′, the controller computed from



an RSP algorithm has to satisfy φ for precisely those input
streams that correspond to paths in a given plant. In this
way, a strategy for controlling a plant can be obtained by
chopping away the irrelevant parts of a computation tree
that satisfies φ′. However, this approach is not interesting
from a practical perspective, especially when a plant is
already available in the form of an automaton. In this case,
encoding the plant to a temporal logic specification does
not make much sense, due to computational complexity
reasons. Indeed, for most temporal logics, the reactive
synthesis problems for the logic is at least exponential in
the length of the formula, so keeping the size of the formula
small is essential. This complexity often arises because
of the need to translate the formula into some form of
automaton during the synthesis algorithm. As plants are
naturally described as automata, it is not wise to translate
a plant automaton into a plant formula, and then back into
an automaton.

4. CONCLUSIONS & PERSPECTIVES

This work is a first step toward bridging the gap between
two research fields, and their corresponding communities,
that developed over the last three decades independently
for a large part, although both target the general problem
of controller synthesis. Some of the results presented here
may be unsurprising, or even known to some researchers
in the field. Still, to our knowledge, no similar written
account exists.

A missing aspect from the present work is modeling and
evaluation. It would be worthwhile to develop case studies
that would allow a detailed comparison of these two frame-
works in terms of plant and specification modeling, com-
putational complexity of synthesis, and implementation of
derived supervisor/controller. A number of interesting top-
ics are left as part of future work, including extending the
bridge to partially-observed systems, to languages other
than safety properties, and to distributed and decentral-
ized control settings.
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