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Motivation

Highly autonomous systems...
... degrade in performance over time

... need to work correctly in off-nominal conditions

... need to adapt without the need of a human operator

Problem:
We do not always know in advance how they are degrading...

...so we should be able to synthesize an adapted strategy in
the field
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Connecting Theory and Practice....

MDP
Control Policy
ComputationEnvironment

Specification

Estimated
Probabilities

Specification

Result
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ω-regular control of MDPs – basic setting

MDP

Trace

X0, X1, X2, . . .
ρ = ρ0ρ1ρ2

ψ|=Policy /
Controller
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Simple example: patrolling

P(ρ |= ψ) ≥ (0.8)4

Motion primitives

0.8

0.2

Specification

GF(green)

∧ GF(red)

∧ GF(purple)

∧ GF(blue)
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Using ω-regular specifications

Ideas
By assuming that traces are infinitely
long, we can abstract from an
unknown time until the system goes
out of service.

Using temporal logic for the
specification with operators such as
“finally” and “globally”, we do not need
to set time bounds for reaching the
system goals, which helps with
maximizing the probability for a
trace to satisfy the specification.

ω-regular specifications allow us to
specify relatively complex behaviors
easily.
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But do ω-regular specifications always make sense?

A thought experiment
Assume that a robot has to patrol between two regions (i.e., it
needs to visit both regions infinite often)

At every second, P(robot breaks) > 10−10.

What is the maximum probability of satisfying the specification
that some control policy can achieve?

It’s

0

as the robot will almost surely eventually break down.
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Main question of the this paper

How can we compute policies
that work towards the satisfaction

of ω-regular specifications
even in the case of

inevitable non-satisfication?
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Motivational example problem
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Solving the problem by intuition

A fact

We will all die, and it can
happen any moment!

Human behavior
But that does not keep us from
planning for the long term
(e.g., getting a PhD)!

Rationale
We normally ignore the risk of
catastrophic but very sparse
events in decision making

However...
... while planning for the long
term, humans minimize the
risk of catastrophic events.

Example
Not doing risky driving

So what we want is...
...a method to compute
risk-averse policies that are at
the same time optimistic that
the catastrophic event does
not happen.
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Towards optimistic, but risk-averse policies (1)

Try 1
Compute policies that after reaching a goal maximize the
probability of reaching the respective next goal.

Example

Goal 1 Goal 2

Specification: GF(goal1) ∧ GF(goal2) ∧ G(¬crash)
Prob. car breaks: 10−10 (every second)
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Towards optimistic, but risk-averse policies (2)

Try 2 (similar to the work by Svorenova et al., 2013)
Compute policies that maximize some value p such that whenever
a goal is reached, the probability of reaching the respective next
goal is at least p.

The same example as before

Goal 1 Goal 2

Specification: GF(goal1) ∧ GF(goal2) ∧ G(¬crash)
Prob. car breaks: 10−10 (every second)
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Towards optimistic, but risk-averse policies (3)

But what about general ω-regular specifications?
Example:

(GF(red) ∧ (¬blueU green)) ∨ (FG(¬blue) ∧ GF(yellow))

What are the goals here and how can we compute risk-averse
policies?

Idea
Let the policy declare the goals. Then we can compute a policy
together with its declaration.
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Declaring goals

(FG(red)
∨ F(blue ∧ XG¬green)
∨ G¬green
∨ GF((green ∧ (¬blueU red))

0

12

green

¬green

¬blue
∧¬redred blue

red

¬red Deterministic
Parity Automaton

Specification



15

Declaring goals (2)

0

12

green

¬green

¬blue
∧¬redred blue

red

¬red

Definition of parity acceptance
A parity automaton accepts a trace if the highest color that occurs
infinitely often along the automaton’s run for the trace is even.

So what are possible goals to be reached?
Colors 0 and 2.
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Declaring goals (3)

Main idea
We require the system to decrease goal colors at most k times (for
some k ∈ N), and whenever an odd-colored state is visited, the
goal color must be higher than the odd color.

Effect
All infinite traces satisfying this new condition satisfy the original
parity objective as well.
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Overall workflow
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What exactly is now being computed?

We compute for some values of p and k ...
A control policy for a parity MDP that always declares its
respective next goal such that:

From every goal state, the next goal state is visited with
probability at least p.

Goal states have an even color, and the color of the goal
states can only be decreased at most k times along a trace

The goal color is always greater than or equal to the odd
colors of the states visited on along the trace

Computing the best policies
We perform bisection search over p and compute if there is a k
such there exists a p-risk-averse policy.
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Motivational example problem (revisited)
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Motivational example problem (revisited)

GF(green)
∧ GF(red)
∧ (FG(gray1) ∨ FG(gray2))
∧ GF(purple ∧ (white ∨ purple)U

(blue ∧ (blue ∨ white)
U light blue)
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Conclusion & End
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Conclusion

p-risk-averse policies
They allow to find reasonable policies even if
the specification cannot be fulfilled in the
long run.

Work with all ω-regular specifications

Computation can be done efficiently

Tool available:
http://progirep.github.io/ramps/

Future work
What about 2.5 player games? Combination with
costs?
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Computing a p-risk-averse policy

Approach in the paper
For every p ∈ [0, . . . , 1], a p-risk-averse control policy has a
finite number of states.

Optimal strategies can be computed by solving a series of
optimal reachability policy computations in MDPs.
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Formal definition

Definition: p-risk-averse strategy
LetM = (S,A ,Σ,P,C , s0) be a parity MDP. We say that some control
policy f : S∗ → A has a risk-averseness probability p ∈ [0, 1] if there exist
labelings l : S∗ → N and l′ : S∗ → B and a Markov chain C′ induced by
M and f with the following properties:

There exists some number k ∈ N such that for all t0t1t2 . . . ∈ Sω,
there are at most k many indices i ∈ N for which we have
l(t0 . . . ti) > l(t0 . . . ti ti+1).

For all t0t1 . . . tn ∈ S∗, we have that l(t0 . . . tn) is even, and
l′(t0 . . . tn) = tt implies that C(tn) ≥ l(t0 . . . tn) and that C(tn) is even.

For all t0t1 . . . tn ∈ S∗, if C(tn) is odd, then l(t0 . . . tn) > C(tn).

For all t = t0t1 . . . tn ∈ S∗ with either (a) l′(t) = tt or (b) t = s0, the
probability measure in C′ to reach some state t t ′0 . . . t

′
m ∈ S∗ with

l′(t t ′0 . . . t
′
m) = tt from state t is at least p.


